Biharmonic maps between Riemannian manifolds

R. Cadeo, E. Loubeau, S. Montaldo, C. Oniciuc, P. Piu

Department of Mathematics, Cagliari, Italy - Department of Mathematics, Brest, France - Faculty of Mathematics, Iaşi, Romania

cadeo@unica.it - loubeau@univ-brest.fr - montaldo@unica.it - oniciuc@uaic.ro - piu@unica.it

2000 Mathematics Subject Classification. 58E20
Poster N. 57 - Scientific Section N. 5

The definition

Let \(\varphi: (M, g) \to (N, h) \) be a smooth map between Riemannian manifolds.

Biharmonic maps are critical points of the energy functional

\[
E_{\varphi} = \frac{1}{2} \int_M |d\varphi|^2 \, g
\]

The corresponding Euler-Lagrange equation is

\[
\tilde{\nabla}^2 \varphi = 0
\]

where \(\tilde{\nabla}^2 \) is the rough Laplacian on \(M \) and \(\varphi \) is a smooth map between Riemannian manifolds.

The classification results

Proper biharmonic curves on a surface of revolution are classified, for example we have (2):

Proper biharmonic curves on the eight-dimensional Thurston geometries are classified by means of Cartan-Feinstein metrics

\[
\varphi: (M, g) \to (N, h)
\]

and their parametrization is described explicitly in (6).

In particular:

- A proper biharmonic surface of \(S^3 \) is locally a piece of \(S^3 \). If compact, it is \(S^3 \).
- A Hopf cylinder \(S^3 \) is a proper biharmonic surface of \(S^3 \).

The stability

Let \(\varphi: (M, g) \to (N, h) \) be a biharmonic map. Then the Hessian of the bienergy at \(\varphi \) is given by

\[
\nabla^2 \varphi = \frac{1}{2} \int_M |d\varphi|^2 \, g
\]

and we deduce

a) If \(m = 1 \) and \(n \neq 0 \), then nullity(\(d\varphi \)) = 0.

b) If \(m \neq 0 \), then nullity(\(d\varphi \)) = 8.

The general properties

A harmonic map is obviously a biharmonic map and an absolute minimum of the bienergy. A non-harmonic biharmonic map is called proper biharmonic.

A proper biharmonic map does not exist:

- If \(M \) is compact and \(\text{Riem}^N \leq 0 \) [10].
- If \(M \to N \) is an isometric immersion with \(\text{rank} \, R^N \leq 0 \) and \(\text{Riem}^N \leq 0 \) and \(N \) has constant non-positive curvature [9, 12].
- If \(\varphi \) is a Riemannian submersion with basic tension field and one of the following holds [14]:
 - \(M \) is compact, orientable and \(\text{Riem}^N \leq 0 \)
 - \(\text{Riem}^N \leq 0 \) and \(\varphi \) is not proper
 - \(N \) is compact and \(\text{Riem}^N < 0 \)

General Chen’s Conjecture: (Biharmonic submanifolds of a manifold \(N \) with \(\text{Riem}^N \leq 0 \) are minimal)

The energy tensor

In the context of harmonic maps, the stress-energy tensor is

\[
S(\varphi, d\varphi) = \frac{1}{2} \sqrt{\det(g)} \nabla \varphi \otimes d\varphi
\]

For biharmonic maps the stress-energy tensor is

\[
S_{\varphi}(X, Y) = \frac{1}{2} \frac{\det(\varphi)}{\det(g)} \left(\frac{d\varphi(X)}{d\varphi(Y)} \right)_X + \frac{1}{2} \sqrt{\det(g)} \nabla \varphi \otimes d\varphi
\]

Property: The composition \(\varphi: M \to N \) is biharmonic if and only if and it is pseudo-umbilical.

Application: There exist closed orientable embedded proper biharmonic surfaces of arbitrary genus in \(S^4 \).

Classification

Proper biharmonic curves on the eight-dimensional Thurston geometries are classified by means of Cartan-Feinstein metrics

\[
\varphi: (M, g) \to (N, h)
\]

and their parametrization is described explicitly in (6).

In particular:

- A proper biharmonic surface of \(S^3 \) is locally a piece of \(S^3 \). If compact, it is \(S^3 \).
- A Hopf cylinder \(S^3 \) is a proper biharmonic surface of \(S^3 \).

Proper biharmonic curves on the eight-dimensional Thurston geometries are classified by means of Cartan-Feinstein metrics

\[
\varphi: (M, g) \to (N, h)
\]

and their parametrization is described explicitly in (6).

In particular:

- A proper biharmonic surface of \(S^3 \) is locally a piece of \(S^3 \). If compact, it is \(S^3 \).
- A Hopf cylinder \(S^3 \) is a proper biharmonic surface of \(S^3 \).

Further studies

The hypersurfaces \(S^3 \) and \(S^3 \) and the generalized Clifford torus are the only known examples of proper biharmonic hypersurfaces.

Open problem: Prove that proper biharmonic hypersurfaces of \(S^3 \) have constant mean curvature.

Open problem: Compute the biharmonic index of the generalized Clifford torus in \(S^3 \).

Harmonic maps do not always exist, for instance J. Eells and J.C. Wood showed that there exists no harmonic map from \(S^2 \) to \(S^4 \) (whatever the metrics chosen) in the homotopy class of the Hopf degree 2.

Open problem: Find a biharmonic map from \(S^2 \) to \(S^4 \).

The bibliography of biharmonic maps

http://birecmedia.unica.it/biharmap/