Publications

 

Scopus Author

ResearcherID – Thomson Reuters

ORCID

Google Scholar Citations

 

Anagrafe della Ricerca

Titolo: Image-based multi-resolution-ANN approach for on-line particle size characterization
Autori: 
Data di pubblicazione: 2013
Rivista: 
CHEMICAL ENGINEERING TRANSACTIONS  
Abstract: An image-based multi-resolution sensor for online prediction of crystal size distribution (CSD) is proposed. The mean and standard deviation (std) of lognormal probability density function as the CSD can be predicted through the on-line sensor. Texture analysis, through wavelet-texture algorithm, as characteristic parameters to follow the crystal growth is utilized. Following nonlinear mappings consisting of artificial neural networks (ANNs) is incorporated using as inputs the texture information in conjunction with the available on-line process conditions. The output data for training the ANN models are measured manually at different sampling times as well as in a range of operating conditions. Validations against experimental data are presented for the NaCl-water-ethanol anti-solvent crystallization system.
Handle: http://hdl.handle.net/11584/50373
ISBN: 978-88-95608-23-5
Tipologia:2.1 Contributo in volume (Capitolo o Saggio)

File in questo prodotto:
Non ci sono file associati a questo prodotto.
credits unica.it | accessibilità Università degli Studi di Cagliari
C.F.: 80019600925 - P.I.: 00443370929
note legali | privacy

Nascondi la toolbar