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Abstract We introduce the notion of proper unitary connective-gate and we prove that
entanglement cannot be characterized by such gates. We consider then a larger class of gates
(called pseudo-unitary gates), which contains both the unitary and the anti-unitary quan-
tum operations. By using a mixed language (a proper extension of the standard quantum
computational language), we show how a logical characterization of entanglement is pos-
sible in the framework of a mixed semantics, which generalizes both the unitary and the
pseudo-unitary quantum computational semantics.
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1 Proper Unitary Connective-gates

In the first part of this article we have given some negative and some partial positive
answers to the general question “to what extent is a logical characterization of entanglement
and of entanglement-measures possible?” We will now further investigate this question by
considering other examples of gates that have a special logical interest.

It is expedient to recall the definition of some gates that will be used in this article. Let
H(n) be the Hilbert space C2 ⊗ . . . ⊗ C

2
︸ ︷︷ ︸

n−t imes

.

Definition 1 (The negation) For any n ≥ 1, the negation (defined on H(n)) is the linear
operator NOT(n) such that, for every element |x1, . . . , xn〉 of the canonical basis,

NOT(n)|x1, . . . , xn〉 = |x1, . . . , xn−1〉 ⊗ |1 − xn〉.

In particular, we obtain:
NOT(1)|0〉 = |1〉; NOT(1)|1〉 = |0〉,

according to the classical truth-table of negation.

Definition 2 (The Toffoli-gate) For any m, n, p ≥ 1, the Toffoli-gate (defined on
H(m+n+p)) is the linear operator T(m,n,p) such that, for every element |x1, . . . , xm〉 ⊗
|y1, . . . , yn〉 ⊗ |z1, . . . , zp〉 of the canonical basis,

T(m,n,p) |x1, . . . , xm, y1, . . . , yn, z1, . . . , zp〉
= |x1, . . . , xm, y1, . . . , yn, z1, . . . , zp−1〉 ⊗ |xmyn+̂zp〉,

where +̂ represents the addition modulo 2.

Definition 3 (The XOR-gate) For any m, n ≥ 1, the XOR-gate (defined on H(m+n)) is the
linear operator XOR(m,n) such that, for every element |x1, . . . , xm〉 ⊗ |y1, . . . , yn〉 of the
canonical basis,

XOR(m,n)|x1, . . . , xm, y1, . . . , yn〉 = |x1, . . . , xm, y1, . . . , yn−1〉 ⊗ |xm+̂yn〉.

Definition 4 (The Hadamard-gate) For any n ≥ 1, the Hadamard-gate (defined on H(n))

is the linear operator
√
I

(n)
such that for every element |x1, . . . , xn〉 of the canonical basis:

√
I

(n)|x1, . . . , xn〉 = |x1, . . . , xn−1〉 ⊗ 1√
2

(

(−1)xn |xn〉 + |1 − xn〉
)

.

In particular we obtain:√
I

(1)|0〉 = 1√
2
(|0〉 + |1〉);√

I
(1)|1〉 = 1√

2
(|0〉 − |1〉).

Hence,
√
I

(1)
transforms bits into genuine qubits.

Definition 5 (The square root of NOT) For any n ≥ 1, the square root of NOT (defined

on H(n)) is the linear operator
√
NOT

(n)
such that for every element |x1, . . . , xn〉 of the

canonical basis:
√
NOT

(n)|x1, . . . , xn〉 = |x1, . . . , xn−1〉 ⊗
(

1 − i

2
|xn〉 + 1 + i

2
|1 − xn〉

)

,
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where i = √−1.

Definition 6 (The Fredkin-gate) For any m, n, p ≥ 1, the Fredkin-gate (defined
on H(m+n+p)) is the linear operator F(m,n,p) such that for every element
|x1, . . . , xm, y1, . . . , yn, z1, . . . , zp〉 of the canonical basis ofH(m+n+p),

F(m,n,p)|x1, . . . , xm, y1, . . . , yn, z1, . . . , zp〉 =
{ |x1, . . . , xm−1, yn, y1, . . . , yn−1, xm, z1, . . . , zp〉, if zp = 0;

|x1, . . . , xm, y1, . . . , yn, z1, . . . , zp〉, otherwise.

Definition 7 (The shift-gate) For any n ≥ 1, the shift-gate (defined on H(n)) is the linear
operator SH(n) such that, for every element |x1 . . . , xn〉 of the canonical basis,

SH(n)|x1, . . . , xn〉 = |xn, x1, . . . , xn−1〉.
Now we introduce a highly representative class of gates, called proper unitary

connective-gates (briefly, connective-gates).

Definition 8 (Connective-gate) Consider a Hilbert space H(m+n+p) with m, n ≥ 0 and
p ≥ 1.

A connective-gate of H(m+n+p) is a unitary operator G(m,n,p) that can be represented in
the following form:

G(m,n,p) :=
[

P
(m)
0 ⊗ P

(n)
0 ⊗ I(p−1) ⊗ U00

]

+
[

P
(m)
0 ⊗ P

(n)
1 ⊗ I(p−1) ⊗ U01

]

+
[

P
(m)
1 ⊗ P

(n)
0 ⊗ I(p−1) ⊗ U10

]

+
[

P
(m)
1 ⊗ P

(n)
1 ⊗ I(p−1) ⊗ U11

]

,

where Uij are unitary operators ofH(1), I(0) = 1, P (0)
0 = P

(0)
1 = 1

2 .
1

Apparently, any connective-gate G(n) applied to a register |x1, . . . , xn〉 transforms the
target-bit |xn〉 into a qubit that determines the probability-value of G(n)(|x1, . . . , xn〉).

One can easily check that the negation NOT(1) (of H(1)) and the Toffoli-gate T(1,1,1) (of
H(1+1+1)) are connective-gates, since they can be represented in the following form:

NOT(1) =
(

1

2
· 1
2

· 1
)

NOT(1) +
(

1

2
· 1
2

· 1
)

NOT(1) +
(

1

2
· 1
2

· 1
)

NOT(1) +
(

1

2
· 1
2

· 1
)

NOT(1);

T(1,1,1) =
[

P
(1)
0 ⊗ P

(1)
0 ⊗ 1 · I(1)

]

+
[

P
(1)
0 ⊗ P

(1)
1 ⊗ 1 · I(1)

]

+
[

P
(1)
1 ⊗ P

(1)
0 ⊗ 1 · I(1)

]

+
[

P
(1)
1 ⊗ P

(1)
1 ⊗ 1 · NOT(1)

]

.

Similar representations can be given for the gates NOT(p),T(m,n,p),XOR(n,p),√
NOT

(p)
,
√
I

(p)
. Examples of gates that are not connective-gates are the Fredkin-gate and

the shift-gate.

1We recall that P (n)
0 and P

(n)
1 represent, respectively, the falsity-property and the truth-property of the space

H(n) (see Section 2 of the first part of this article).
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All gates can be canonically extended to the set D of all density operators. Let G be any
gate defined onH(n). The corresponding density-operator gate (also called unitary quantum
operation) DG is defined as follows for any ρ ∈ D(H(n)):

DGρ = G ρ G† where G† is the adjoint of G.

For the sake simplicity, also the operations DG will be briefly called gates.

Theorem 1 There is no connective-gate G(m,n,1) that satisfies the following condition:
there exists a function μ : [0, 1] → [0, 1] such that for any density operator ρ of

H(m) ⊗ H(n), μ
(

p
(

DG(m,n,1)
(

ρ ⊗ P
(1)
0

)))

is an entanglement-measure for ρ (where p

is the probability-function defined on the set of all density operators).2

Proof Suppose there exists a connective gate G(m,n,1) satisfying the condition considered
by the theorem.
Take ρ1 = P 1√

2
(|0,...,0,0〉+|1,...,1,0〉) and ρ2 = 1

2

(

P|0,...,0,0〉 + P|1,...,1,0〉
)

. Clearly, ρ1

is entangled, while ρ2 is separable. At the same time we have: p(DG(m,n,1)(ρ1)) =
tr

(

P
(m+n+1)
1 P 1√

2
(|0,...,0〉⊗U00|0〉+|1,...,1〉⊗U11|0〉)

)

= tr
(

P
(1)
1

DU00

(

P
(1)
0

))

+
tr
(

P
(1)
1

DU11

(

P
(1)
0

))

= tr
(

P
(m+n+1)
1

1
2 (P|0,...,0〉⊗U00|0〉 + P|1,...,1〉⊗U11|0〉)

)

=
p(DG(m,n,1)(ρ2)).

This theorem implies that the probabilistic behavior of connective-gates cannot charac-
terize entanglement.

2 Truth-perspectives and Gates

As is well known, the choice of an orthonormal basis for the space C2 is a matter of con-
vention. One can consider infinitely many bases that are determined by the application of
a unitary operator T to the elements of the canonical basis (|1〉 and |0〉). From an intuitive
point of view, we can think that the operator T gives rise to a change of truth-perspective.
Different epistemic agents a can be associated to different truth-perspectives Ta, because
their knowledge is based on different ideas about truth and falsity.3 From a physical point
of view, we can suppose that each truth-perspective corresponds to an apparatus that allows
one to measure a given observable.

Any truth-perspective T can be naturally extended to a unitary operator T(n) ofH(n) (for
any n ≥ 1):

T(n)|x1, . . . , xn〉 = T|x1〉 ⊗ . . . ⊗ T|xn〉.
Accordingly, any choice of T determines an orthonormal basis B

(n)
T

forH(n) such that:

B
(n)
T

=
{

T(n)|x1, . . . , xn〉 : |x1, . . . , xn〉 ∈ B
(n)
I

}

,

2We recall that p(ρ) := tr(P (n)
1 ρ), for any density operator ρ of H(n), where tr is the trace-functional (see

Section 2 of the first part of this article).
3Truth-perspectives play an important role in the case of epistemic quantum computational logics. See, for
instance, [1–3].
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where B
(n)
I is the canonical basis ofH(n).

Instead of T(n)|x1, . . . , xn〉 we will also write: |x1T , . . . , xnT〉. The elements of B
(n)
T

represent the T-registers of H(n), while |1T〉 and |0T〉 represent the truth-values Truth and
Falsity with respect to the truth-perspective T.

The notions of truth, falsity and probability with respect to a truth - per-
spective T can be defined like in the canonical case. The T-truth TP

(n)
1 is the

projection-operator that projects over the closed subspace spanned by the set of
all T-registers |x1T , . . . , x(n−1)T , 1T〉; while the T-falsity TP

(n)
0 is the projection-

operator that projects over the closed subspace spanned by the set of all T-registers
|x1T , . . . , x(n−1)T , 0T〉. The T-probability pT is defined as follows for any density operator
ρ ofH(n):

pT(ρ) := tr(TP
(n)
1 ρ).

All gates can be naturally transposed from the canonical truth-perspective to any truth-
perspective T. Let G(n) be any gate defined with respect to the canonical truth-perspective.
The twin-gate G(n)

T
, defined with respect to the truth-perspective T, is determined as

follows:
G(n)
T

:= T(n)G(n)T(n)† .

In the following we will almost always refer to the canonical truth-perspective and to
canonical gates.

3 Anti-unitary Gates and Pseudo-unitary Gates

To what extent are we forced to assume that quantum information should be always
processed by quantum unitary operations? Are there any alternative reasonable choices?

An interesting discussion has concerned the role of negation in quantum compu-
tation. As is well known, the gate NOT(n) has a characteristic property that seems
to be counter-intuitive: a quregister |ψ〉 (of H(n)) is not necessarily orthogonal to
its negation NOT(n)|ψ〉. For instance, the qubit 1√

2
(|0〉 + |1〉) is a fixed point of

NOT(1):

NOT(1) 1√
2
(|0〉 + |1〉) = 1√

2
(|0〉 + |1〉).

At the same time, for all registers |x1, . . . , xn〉 we have:
|x1, . . . , xn〉 ⊥ NOT(n)|x1, . . . , xn〉.

One can prove that no unitary operator U of H(1) satisfies, at the same time, the two
following conditions (which seem both desirable properties for a gate representing a faithful
generalization of the classical negation):

1. |ψ〉 ⊥ U |ψ〉, for any qubit |ψ〉;
2. p(D(UU)P|ψ〉) = p(P|ψ〉), for any qubit |ψ〉 (where p is the probability-function

defined with respect to the canonical truth-perspective).

This intuitive shortcoming can be overcome, if we decide to replace the familiar negation
NOT(n) (which is a unitary operator) with a particular example of an anti-unitary operator.

Let us first recall the general definition of anti-unitary operator.

Definition 9 (Anti-unitary operator) An operator A of a Hilbert space H is called anti-
unitary iff A satisfies the following conditions:
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1) A preserves the absolute value of inner product.

2) A is anti-linear. In other words, for any vector
∑

i ci |ψi〉 ofH:

A
∑

i

ci |ψi〉 =
∑

i

c∗
i A|ψi〉.

As is well known, anti-unitary operators play an important role in quantum field theory
[8], where they are applied, for instance, to represent time-reversal symmetry. In quantum
computation these operators have been recently used for different aimes (for instance, in
all criteria of inseparability for two-qubit systems and in the quantum simulation of the
Majorana-equation)4.

The anti-unitary negation (also called universal NOT) is defined as follows.

Definition 10 (The anti-unitary negation) For any n ≥ 1, the anti-unitary negation is the
anti-linear operator ̂NOT(n) defined on H(n) such that for every element |x1, . . . , xn〉 of the
canonical basis,

̂NOT(n)|x1, . . . , xn〉 = (−1)1−xn |x1, . . . , xn−1, 1 − xn〉.

One can easily show that:

1. |ψ〉 ⊥ ̂NOT(n)|ψ〉, for any |ψ〉 ofH(n);
2. ̂NOT(n)

̂NOT(n)|ψ〉 = −|ψ〉, for any |ψ〉 of H(n); hence,

p
(

D
(

̂NOT(n)
̂NOT(n)

)

P|ψ〉
)

= p(P|ψ〉).

The anti-unitary negation admits an intuitive geometrical interpretation in the
case of the space C

2. Consider the Poincaré-Bloch sphere, which is in one-
to-one correspondence with the set D(C2) of all density operators of C

2. In
such a case, ̂NOT(1) transforms any point of the sphere into its antipodal
point.

It may be interesting to consider a proper set of D(C2), corresponding to the part of the
sphere that is represented by the dashed circle (in Fig. 1).

Let T be the truth-perspective defined as follows: T|0〉 = |0〉; T|1〉 = i|1〉; and consider
the gate DNOT(1)

T
(the twin-gate of DNOT(1) determined by T). We have: DNOT(1)

T
= Dσy ,

where σy is the second Pauli matrix. Hence,DNOT(1)
T

transforms any point of the dashed cir-

cle into its antipodal point; consequently:DNOT(1)
T

ρ = D
̂NOT(1)

ρ, for any ρ corresponding
to a point of our circle. This justifies the following conclusion: for some pieces of quantum
information (corresponding to points of the dashed circle) and for some epistemic agents
(whose truth-perspective is T) the standard unitary negation and the anti-unitary negation
coincide.

An interesting investigation concerns possible experimental realizations of approxima-
tions of some anti-unitary gates via unitary gates. An approximation of the gate ̂NOT(1) has
been obtained by using a slight modification of the standard quantum teleportation-protocol
[9]. Other techniques allow us to approximate ̂NOT(n) (as well as other anti-unitary gates)
by means of completely positive maps [7].

4See [4, 6].
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Fig. 1 The Poincaré-Bloch
sphere

Have all connective-gates a natural anti-unitary counterpart? The answer to this question
is negative. Consider the case of the square-root of the anti-unitary negation. One can prove

that any operator
√̂
NOT

(n)

such that

√̂
NOT

(n)√̂
NOT

(n)

= ̂NOT(n)

is neither linear nor anti-linear. This suggests to consider a larger class of operators that we
call pseudo-unitary gates[11].

Definition 11 (Pseudo-unitary gate) The set of all pseudo-unitary gates (also called
additive bounded operators) of a Hilbert spaceH is the smallest set Ps(H) such that

1) Ps(H) is included in the set of all bounded operators ofH;
2) Ps(H) includes the set of all unitary operators and the set of all anti-unitary operators

ofH;
3) Ps(H) is closed under operator-sum.

Of course, ̂NOT(n) is (trivially) an example of a pseudo-unitary operator. The
pseudo-unitary square-root of negation, the pseudo-unitary square-root of identity,
the pseudo-unitary Toffoli-gate and the pseudo-unitary ̂XOR-gate can be defined as
follows.

Definition 12 (The pseudo-unitary square-root of negation) For any n ≥ 1, the pseudo-
unitary square-root of negation onH(n) is defined as follows:

√̂
NOT

(n)

= 1√
2
(I(n) + ̂NOT(n)

).
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We have:

1.
√̂
NOT

(n)

is (by definition) a pseudo-unitary gate;

2.
√̂
NOT

(n)√̂
NOT

(n)

= ̂NOT(n).

Definition 13 (The pseudo-unitary square-root of identity) For any n ≥ 1, the pseudo-
unitary square-root of identity onH(n) is defined as follows:

√̂
I

(n) = 1√
2
(I(n) − ̂NOT(n)

)(I(n−1) ⊗ σz),

where σz is the third Pauli-matrix.

We have:

1.
√̂
I

(n)
is (by definition) a pseudo-unitary gate:

2.
√̂
I

(n)√̂
I

(n) = I(n).

Definition 14 (The pseudo-unitary Toffoli-gate) For any m, n, p ≥ 1, the pseudo-unitary
Toffoli-gate onH(m+n+p) is defined as follows:

T̂(m,n,p) =
(

I(m+n) − P
(m)
1 ⊗ P

(n)
1

)

⊗ I(p) + P
(m)
1 ⊗ P

(n)
1 ⊗ ̂NOT(p)

.

Definition 15 (The pseudo-unitary XOR-gate) For any m, n ≥ 1, the pseudo-unitary XOR-
gate onH(m+n) is defined as follows:

̂XOR(m,n) = P
(m)
0 ⊗ I(n) + P

(m)
1 ⊗ ̂NOT(n)

.

As happens in the case of unitary gates, also pseudo-unitary gates can be generalized to
density operators. If ̂G(n) is a pseudo-unitary operator of H(n), the corresponding pseudo-
unitary quantum operation D

̂G(n) is defined on the set of all density operators ρ ofH(n) as
follows:

D
̂G(n)ρ =̂G(n)ρ̂G(n)† .

Both the pseudo-unitary operatorŝG(n) and the pseudo-unitary quantum operations D
̂G(n)

will be called pseudo-unitary gates.
As expected, a unitary gate DG(n) and its correspondent pseudo-unitary gate D

̂G(n)

generally give rise to different outputs, when applied to one and the same input:

DG(n)ρ 
= D
̂G(n)ρ.

In spite of this, one can prove that applications of the gates negation, Toffoli, XOR, square-
root of negation, square-root of identity determine the same probability-values in the unitary
and in the pseudo-unitary case.

Theorem 2 1. For any ρ ofH(n),

p
(

D
̂NOT(n)

ρ
)

= p
(

DNOT(n)ρ
)

,

p

(

D
√̂
NOT

(n)

ρ

)

= p
(

D
√
NOT

(n)
ρ
)

,

p

(

D
√̂
I

(n)
ρ

)

= p
(

D
√
I

(n)
ρ
)

.
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2. For any ρ ofH(m+n+p),
p
(

DT̂(m,n,p)ρ
) = p(DT(m,n,p)ρ).

3. For any ρ ofH(m+n),

p
(

D
̂XOR(m,n)

ρ
)

= p
(

DXOR(m,n)ρ
)

.

Proof

1.p
(

D
̂NOT

(n)
ρ
)

= tr
(

P
(n)
1
̂NOT(n)

ρ ̂NOT(n) †
)

= tr
(

̂NOT(n) †
P

(n)
1
̂NOT(n)

ρ
)

= tr
((

I(n−1) ⊗ ̂NOT(1) †
) (

I(n−1) ⊗ P
(1)
1

) (

I(n−1) ⊗ ̂NOT(1)
)

ρ
)

= tr
((

I(n−1) ⊗ ̂NOT(1) †
P

(1)
1
̂NOT(1)

)

ρ
)

= tr
((

I(n−1) ⊗ NOT(1) †P
(1)
1 NOT(1)

)

ρ
)

= tr
(

NOT(n) †P
(n)
1 NOT(n)ρ

)

= tr
(

P
(n)
0 ρ

)

= tr
((

I (n) − P
(n)
1

)

ρ
)

= 1 − p(ρ).

In a similar way for
√̂
NOT

(n)

and
√̂
I

(n)
.

2.p(DT̂
(m,n,p)

ρ)

= tr(P (m+n+p)

1 T̂(m,n,p)ρ T̂(m,n,p) †)

= tr(((I(m+n) − I(m−1) ⊗ P
(1)
1 ⊗ I(n−1) ⊗ P

(1)
1 ) ⊗ I(p)

+I(m−1) ⊗ P
(1)
1 ⊗ I(n−1) ⊗ P

(1)
1 ⊗ I(p−1) ⊗ ̂NOT(1)

)†

(I(m+n+p−1) ⊗ P
(1)
1 )

((I(m+n) − I(m−1) ⊗ P
(1)
1 ⊗ I(n−1) ⊗ P

(1)
1 ) ⊗ I(p)

+I(m−1) ⊗ P
(1)
1 ⊗ I(n−1) ⊗ P

(1)
1 ⊗ I(p−1) ⊗ ̂NOT(1)

)ρ)

= p(DT
(m,n,p)

ρ).

3. In a similar way for XOR(m,n).

In the next Section we will see how this theorem has an important consequence for
the development of a pseudo-unitary version of the standard (unitary) holistic quantum
computational semantics.
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4 Unitary and Pseudo-unitary Quantum Computational Semantics

In the standard semantics for quantum computational logics formulas are interpreted as
pieces of quantum information (density operators of convenient spaces H(n)), while the
logical connectives are interpreted as unitary gates.5 This approach can be naturally trans-
formed into a pseudo-unitary semantics, where the same connectives are interpreted as
pseudo-unitary gates. Let us briefly recall the basic concepts of the unitary semantics. The
alphabet of the quantum computational languageL contains atomic formulas (q, q1, q2, . . .)
including two privileged formulas t and f that represent the truth-values Truth and Falsity
respectively. The connectives of L are: the negation ¬ (corresponding to the gate NOT(n)),
the ternary Toffoli-connective ᵀ (corresponding to the gate T(m,n,p)), the exclusive disjunc-
tion � (corresponding to the gate XOR(m,n)), the square root of negation

√¬ (corresponding

to the gate
√
NOT

(n)
), the square root of identity

√
id (corresponding to the gate

√
I

(n)
).

The notion of formula is inductively defined as follows: 1) atomic formulas are formulas;
2) if α, β, γ are formulas, then ¬α,

√¬α,
√

idα, ᵀ(α, β, γ ), α �β are formulas. Recalling
the definition of the holistic conjunction AND(m,n), a binary conjunction ∧ can be defined in
terms of the Toffoli-connective: α ∧ β := ᵀ(α, β, f) (where f plays the role of a syntactical
ancilla)6.

By atomic complexity of a formula α we mean the number At(α) of occurrences of
atomic subformulas in α. For instance, the atomic complexity of the formula α = q∧¬q =
ᵀ(q, ¬q, f) is 3. The number At(α) plays an important semantic role, since it determines
the semantic space Hα = H(At(α)), where any density operator representing a possible
informational meaning of α shall live. We have, for instance,Hᵀ(q,¬q,f) = H(3).

Any formula α can be naturally decomposed into its parts giving rise to a special config-
uration, called the syntactical tree of α (ST reeα). Roughly, ST reeα can be represented as
a sequence of levels consisting of subformulas of α. The bottom-level is (α), while all other
levels are obtained by dropping, step by step, all connectives occurring in α. Hence, the top-
level is the sequence of atomic formulas occurring in α. As an example consider again the
formula α = ᵀ(q, ¬q, f). In such a case, ST reeα is the following sequence of levels:

Levelα3 = (q, q, f)

Levelα2 = (ᵀ(q, ¬q, f))

Levelα1 = (ᵀ(q, ¬q, f))

For any α, ST reeα uniquely determines the gate-tree of α: a sequence of gates all defined
on the space Hα . As an example, consider again the formula, α = ᵀ(q, ¬q, f). In the
syntactical tree of α the second level has been obtained (from the third level) by repeating
the first occurrence of q, by negating the second occurrence of q and by repeating f; while
the first level has been obtained (from the second level) by applying the Toffoli-connective.
Accordingly, the gate-tree of α can be naturally identified with the following gate-sequence:

(

D(I(1) ⊗ NOT(1) ⊗ I(1))DT(1,1,1)
)

.

5See [5].
6We recall that for any m, n ≥ 1 and for any density operator ρ of the Hilbert space H(m+n), AND(m,n) is
defined as follows: AND(m,n)(ρ) := DT(m,n,1)(ρ ⊗ P

(1)
0 ) (see Definition 7 of the first part of this article).
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This procedure can be naturally generalized to any α, whose gate-tree will be indicated by
(

DGα
n−1, . . . ,

DGα
1

)

(where n is the number of levels of ST reeα). On this basis, we can say
that any formula ofL can be regarded as a synthetic logical description of a quantum circuit.

We consider here a holistic version of the quantum computational semantics, where
entanglement can be used as a “semantic resource”[5]. Generally, the meaning of a com-
pound formula determines the contextual meanings of its parts (and not the other way
around, as happens in the case of most compositional semantic approaches).

The concept of model of L is based on the notion of holistic map for L. This is a map
Hol such that, for any α and for each Levelαi (of ST reeα),

Hol : α → ρ ∈ D(Hα).

Suppose that Levelαi = (βi1 , . . . , βir ). It is natural to describe ρ = Hol(Levelαi ) as a pos-
sible state of a composite quantum system consisting of r subsystems. Hence, the contextual
meaning (Holα(βij )) of the occurrence βij (in ST reeα) can be identified with the reduced
state of ρ with respect to the j -th subsystem. Accordingly, we can write:

Holα(βij ) = Red
(j)

[At(βi1 ),...,At (βir )](ρ).

In a similar way one can also define the contextual meaning of a subsequence
(βik1

, . . . , βiku
) of Levelαi .

The concepts of model, truth and logical consequence are now defined as follows.

Definition 16 (Model) A model of the language L is a holistic map Hol that satisfies the
following conditions for any formula α:

1) Hol assigns the same contextual meaning to different occurrences of one and the same
subformula of α (in ST reeα).

2) The contextual meanings of the true formula t and of the false formula f are the truth
P

(1)
1 and the falsity P

(1)
0 , respectively.

3) Hol preserves the logical form of α by interpreting the connectives of α as the
corresponding gates. Accordingly, if

(

DGα
n−1, . . . ,

DGα
1

)

is the gate-tree of α, then
Hol(Levelαi ) = DGα

i

(

Hol
(

Levelαi+1

))

.

On this basis we put:

Hol(α) = Hol(Levelα1 ), for any formula α.

Notice that any Hol(α) represents a kind of autonomous semantic context that is not
necessarily correlated with the meanings of other formulas. Generally we have: Holγ (β) 
=
Holδ(β). Thus, one and the same formula may receive different contextual meanings in
different contexts.

Definition 17 (Truth) A formula α is called true with respect to a model Hol iff
p(Hol(α)) = 1.

Definition 18 (Logical consequence) A formula β is called a logical consequence of a
formula α iff for any formula γ such that α and β are subformulas of γ and for any model
Hol:

p(Holγ (α)) ≤ p(Holγ (β)).
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This notion of logical consequence semantically characterizes a special example of logic
that has been termed holistic quantum computational logic.

The concept of model Hol of the standard (unitary) quantum computational seman-
tics can be naturally transformed into the notion of pseudo-unitary model ̂Hol. While
Hol interprets the logical connectives occurring in the formulas of the language L as the
corresponding unitary gates, ̂Hol interprets the same connectives as the corresponding
pseudo-unitary gates. Consider a formula α and suppose that Hol and ̂Hol assign to the
top-level of ST reeα the same global meaning, represented by a density operator ρ of Hα .
As expected, we will generally have:

̂Hol(α) 
= Hol(α).

In spite of this, one can prove that:

p(̂Hol(α)) = p(Hol(α)).

This is an immediate consequence of Theorem 2 and of our definition of model. Hence, we
can conclude that the unitary and the pseudo-unitary holistic semantics determine the same
concept of logical consequence. Holistic quantum computational logic can be equivalently
characterized either by the unitary or by the pseudo-unitary semantics.

5 A Logical Characterization of Entanglement

In order to investigate the possibility of a logical characterization of entanglement it is useful
to extend the standard quantum computational language L to a richer “mixed” language
LM that contains at the same time unitary connectives (¬, ᵀ, �,

√¬,
√

id), pseudo-unitary

connectives (̂¬,
√̂¬) and a Fredkin-connective F (m,n,p) for any m, n, p ≥ 1. Semantically,

F (m,n,p) is interpreted as the corresponding Fredkin-gate F(m,n,p)).
The use of the Fredkin-connectiveF (m,n,p) is governed by the following syntactical rule.

For any m, n, p ≥ 1 and for any sequence

(α1, . . . , αr , β1, . . . , βs, γ1, . . . , γt )

of formulas such that At(α1) + . . . + At(αr) = m, At(β1) + . . . + At(βs) = n, At(γ1) +
. . . + At(γt ) = p, the expression

F (m,n,p)(α1, . . . , αr , β1, . . . , βs, γ1, . . . , γt )

is a formula of LM . For instance, F (1,1,1)(q1, q2, f) is an example of a Fredkin-formula.
The concept of model of the language LM is defined like in the case of L, mutatis

mutandis.
Consider now a bipartite state ρ (which describes a composite quantum system consisting

of two subsystems) and let C(ρ) be the concurrence of ρ.7 Is it possible to determine C(ρ)

in terms of some meanings of particular formulas of the language LM? Let us first refer to
the simplest situation, where ρ lives in the space H(2). In such a case, ρ may represent the
contextual meaning (with respect to a given model Hol) of a pair of atomic formulas δ and
θ that are subformulas of other formulas.

7We recall that the concurrence of ρ is defined as follows: C(ρ) := inf
{∑

i wiC(P|ψi 〉) : ρ =∑i wiP|ψi 〉
}

,

where C(P|ψ〉) =
√

2
(

1 −∑i λ2i

)

and the numbers λi are eigenvalues of Red
(1)
[m,n](P|ψ〉) (or, equivalently,

of Red
(2)
[m,n](P|ψ〉)) (see Section 3 of the first part of this article).
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We recall that for any ρ ofH(2), the concurrence of ρ satisfies the following relation[12]:

C(ρ) = max{0,√λ1 −√λ2 −√λ3 −√λ4},
where λ1, λ2, λ3, λ4 are the eigenvalues (in decreasing order) of the operator

ρ
[

D(̂NOT(1) ⊗ ̂NOT(1)
)ρ
]

. Hence, in order to estimate C(ρ), it is sufficient to determine

the four numbers λ1, λ1, λ3, λ4. To this aim, we define four formulas η1, η2, η3, η4
and a model Hol (of LM ) such that the four meanings Hol(η1),Hol(η2),Hol(η3),
Hol(η4) allow us to determine the numbers λ1, λ2, λ3, λ4. The formula η1 is defined as
follows:

η1 = √
id F (1,2,2)(F (2,2,1)(δ, θ,̂¬δ,̂¬θ,

√
idf))

(where f is the false formula).
Since the atomic complexity of η1 is 5, all possible meanings of η1 shall live in the space

H(5). The gate-tree of η1 is the following sequence of gates (of the spaceH(5)):

DGη1
4 = D

(

I(1) ⊗ I(1) ⊗ ̂NOT(1) ⊗ ̂NOT(1) ⊗ √
I

(1)
)

DGη1
3 = DF(2,2,1)

DGη1
2 = DF(1,2,2)

DGη1
1 = D

√
I

(5)

Semantically, it turns out that the contextual meanings of δ and of ̂¬δ, of θ and of ̂¬θ

shall be swapped when the last formula corresponds to a false register.
Consider now the following input for the gate-tree of η1:

ρ ⊗ ρ ⊗ P0.

This input gives rise to the following output:

ρ1 = DGη1
1

(

DGη1
2

(

DGη1
3

(

DGη1
4 (ρ ⊗ ρ ⊗ P0)

)))

.

The formula η2 is obtained, in a similar way, by repeating two times the formulas’
sequence (δ, θ,̂¬δ,̂¬θ). Accordingly, we have:

η2 = √
id F (1,2,6)(F (2,2,5)(F (5,2,2)(F (6,2,1)(δ, θ,̂¬δ,̂¬θ, δ, θ,̂¬δ,̂¬θ,

√
idf)))).

In general, for k ∈ {1, 2, 3, 4}, we define ηk as follows:

ηk = √
id F (1,2,4k−2)(F (2,2,4k−3)(. . .

. . .F (1+4(k−1),2,2)F (2+4(k−1),2,1)(δ, θ,̂¬δ,̂¬θ, . . . , δ, θ,̂¬δ,̂¬θ
︸ ︷︷ ︸

k

,
√

idf)) . . .)).

Thus, for each ηk , the corresponding gate-tree
(

DGηk

1 , DGηk

2 , . . . , DGηk

2k+1,
DGηk

2k+2

)

represents a quantum logical circuit whose inputs and outputs live in the spaceH(4k+1).
Consider now, for each ηk , the input ρ ⊗ . . . ⊗ ρ

︸ ︷︷ ︸

2k

⊗P0, and let ρk be the corresponding

output. One can easily show that there is a model Hol that satisfies the following conditions:

1. Hol(Level
ηk

T op) = ρ ⊗ . . . ⊗ ρ
︸ ︷︷ ︸

2k

⊗P0, for each ηk;

2. Hol(ηk) = ρk , for each ηk;
3. Holη1((δ, θ)) = Holη2((δ, θ)) = Holη3((δ, θ)) = Holη4((δ, θ)) = ρ.
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Lemma 1 Let ρ ⊗ . . . ⊗ ρ
︸ ︷︷ ︸

2k

be a density operator of H(4k) (with ρ ∈ D(H(2))). Consider

the following number (which corresponds to a visibility-parameter):

v = tr(SH(4k) ρ ⊗ . . . ⊗ ρ
︸ ︷︷ ︸

2k

) = tr(ρ2k),

(where SH(4k) is the shift-gate).8 We have:

tr

⎛

⎝P
(4k+1)
0

DGηk

1

⎛

⎝. . . DGηk

2k+1

⎛

⎝
DI(4k) ⊗ √

I
(1)

⎛

⎝ρ ⊗ . . . ⊗ ρ
︸ ︷︷ ︸

2k

⊗P0

⎞

⎠

⎞

⎠ . . .

⎞

⎠

⎞

⎠ = 1 + v

2
.

The proof of Lemma 1 is based on [6], which describes a quantum network for direct
estimations of both linear and non-linear functionals of any state.

Theorem 3 For each ηk , the probability-value p(ρk) = p(Hol(ηk)) satisfies the following
relation:

p(ρk) = 1 − tr(

k
︷ ︸︸ ︷

ρ [D(̂NOT(1) ⊗ ̂NOT(1)
)ρ] . . . ρ [D(̂NOT(1) ⊗ ̂NOT(1)

)ρ])
2

.

Proof (Sketch) By lemma 1, p(ρk) = tr
(

P
(4k+1)
1 ρk

)

= 1−v
2 . One can easily show that the

Fredkin-gates realize a shift-operation DSH(4k) acting on

k
︷ ︸︸ ︷

ρ ⊗ [D(̂NOT(1) ⊗ ̂NOT(1)
)ρ] ⊗ . . . ⊗ ρ ⊗ [D(̂NOT(1) ⊗ ̂NOT(1)

)ρ]
when the control state is P

(1)
0 . Hence, by lemma 1,

v = tr(

k
︷ ︸︸ ︷

ρ [D(̂NOT(1) ⊗ ̂NOT(1)
)ρ] . . . ρ [D(̂NOT(1) ⊗ ̂NOT(1)

)ρ]).

As a consequence we obtain:

p(ρk) = 1 −∑4
i=1 λk

i

2
,

where λ1, . . . , λ4 are the eigenvalues of the operator ρ [D(̂NOT(1) ⊗ ̂NOT(1)
)ρ].

Finally, let us consider the following four equations:
⎧

⎪
⎪
⎨

⎪
⎪
⎩

1 − 2p(ρ1) = λ1 + λ2 + λ3 + λ4
1 − 2p(ρ2) = λ21 + λ22 + λ23 + λ24
1 − 2p(ρ3) = λ31 + λ32 + λ33 + λ34
1 − 2p(ρ4) = λ41 + λ42 + λ43 + λ44

8Notice that tr(SH(4k) ρ ⊗ . . . ⊗ ρ
︸ ︷︷ ︸

2k

) 
= tr(DSH(4k) ρ ⊗ . . . ⊗ ρ
︸ ︷︷ ︸

2k

) = 1.
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This equation-system allows us to determine the numbers λ1, . . . , λ4 in terms of the
probability-values p(ρ1), . . . , p(ρ4).

We have obtained in this way a logical protocol that allows us to determine the concur-
rence of a density operator ρ (living in the space H(2)) in terms of the probability-values
of the meanings of four formulas (under a model Hol that depends on ρ). This procedure
can be generalized to any bipartite ρ, living in a space H(m+n), by a convenient choice of
formulas of the language LM .

The quantum logical circuit (we have described) can be realized by an interferometer
with a controlled shift-gate between two Hadamard-gates. In this situation, the visibility of
the interference-patterns of the target-ancilla is modified by the controlled shift-operation.
An experiment with post-selection has been described in [10].

Let us finally discuss the following interesting question: given a bipartite state ρ (living
in the space H(2n)) are there any epistemic agents a and a′ (with truth-perspectives Ta and
Ta′ , respectively), who can estimate the concurrence of ρ by using a unitary gate instead of
the anti-unitary negation? The following theorem gives a positive answer to this question
for the space H(2). Since both the unitary and the anti-unitary negations (defined on the
spaceH(n)) only act on the last element of any register |x1, . . . , xn〉, a generalization of the
theorem to the spaceH(2n) can be obtained in a natural way.

Theorem 4 For any ρ ∈ D(H(2)), there exists an infinite set T of different truth-
perspectives such that for any Ta,Ta′ ∈ T:

D
(

NOT(1)
Ta

⊗ NOT(1)
Ta′

)

ρ = D
(

̂NOT(1) ⊗ ̂NOT(1)
)

ρ.

Proof Consider a circle C determined by the intersection of the Poincaré-Bloch sphere
with a plane (for instance, the dashed circle depicted in Fig. 1 of Section 3). The circle C

can be represented as the set of all vectors (corresponding to points of the sphere) that are
orthogonal to a given vector

−→v = (− sinϕ, cosϕ, 0).

Accordingly, any point of C corresponds to a vector −→
u having the following form:

−→
u = r(sinω cosϕ, sinω sinϕ, cosω).

The density operator ρ−→
u , corresponding to the vector −→

u , will have the form:

ρ−→
u = 1

2

(

1 + r cosω re−iϕ sinω

reiϕ sinω 1 − r cosω

)

,

where ω ∈ [0, 2π) and r ∈ [0, 1].
Now we want to flip any point of C into its antipodal point, by using a unitary quan-

tum operation (which acts on the corresponding density operator). Let us first define the
following unitary operator:

U(1)
ϕ =

(

0 −e−iϕ

eiϕ 0

)

One can show that for any ρ−→
u (such that −→u corresponds to a point of C):

DU(1)
ϕ ρ−→

u = D
̂NOT(1)

ρ−→
u .

As we have learnt in Section 3, given a circle C, there is a truth-perspective T such that:

D
̂NOT(1)

ρ−→
u = DNOT(1)

T
ρ−→

u , for any vector −→
u belonging to C.
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Consider now the infinite set T of truth-perspectives that have the following form:

T(ζ ) =
[

cos
(ζ

2

)

I − i sin
(ζ

2

)

(− sinϕ σx + cosϕ σy)
]

T

(where σx, σy are the first and the second Pauli matrices). There are infinitely many ζ ∈
[0, 2π) such that:

NOT(1)
T(ζ )

= NOT(1)
T

.

Hence, DNOT(1)
T(ζ )

ρ−→
u = D

̂NOT(1)
ρ−→

u , for any vector
−→
u in C.

Finally, consider a density operator ρ ∈ D(H(2)), whose reduced states Red
(1)
[1,1](ρ) and

Red
(2)
[1,1](ρ) correspond to two points of a circle C. We can conclude that there are infinitely

many pairs of truth-perspectives (Ta,Ta′), such that

D
(

NOT(1)
Ta

⊗ NOT(1)
Ta′

)

ρ = D
(

̂NOT(1) ⊗ ̂NOT(1)
)

ρ.

In conclusion, the results presented in the first and in the second part of this article show
how entanglement cannot be generally described by means of “simple” quantum logical
tools. At the same time, a logical characterization of entanglement can be obtained in the
framework of a somewhat “sophisticated” quantum computational semantics, where the
basic logical connectives correspond either to unitary or to pseudo-unitary gates.
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