Continuous functions as quantum operations: a probabilistic approximation

Hector Freytes, Antonio Ledda, Giuseppe Sergioli
Instituto Argentino de Matemática (CONICET)
Università di Cagliari
e-mail: antonio.ledda78@gmail.com

1. Introduction
2. Basic notions
3. A probabilistic Stone-Weierstrass type theorem
4. Representing the standard PMV-operations
5. Conclusions and Open problems

ABSTRACT. In this note we propose a version of the classical Stone-Weierstrass theorem in the context of quantum operations, by introducing a particular class of quantum operations, dubbed polynomial quantum operations. This result permits to interpret from a probabilistic point of view, and up to a certain approximation, any continuous function from the real cube $[0,1]^n$ to the real interval $[0,1]$ as a quantum operation.

KEYWORDS: Quantum operations, PMV-algebras, quantum computation.

1. Introduction

Since the classical work of Birkhoff and von Neumann [4], logical and algebraic perspectives of several aspects of quantum theory have been proposed. Leading examples are orthomodular lattices [21], and effect algebras, appeared independently under several names (e.g. D-posets [23]) as a generalization of orthomodular posets [13, 16]. Moreover, effect algebras play a fundamental role...
in various studies on fuzzy probability theory [3, 17] also.
In recent times, quantum computation itself stirred increasing attention, and an
array of related algebraic structures arose [5, 6, 18, 15]. Those structures stem
from an abstract description of circuits obtained by combinations of quantum
gates [7]. Let us mention as examples quantum MV-algebras [12], quasi MV-
algebras, √\textit{quasi} MV-algebras and product MV-algebras [25, 14, 10, 28].
Even if those structures are plainly related to quantum computing, some of the
functions in their types are algebraic abstractions of irreversible transformations,
e.g. the truncated disjunction “⊕” [7].
These observations provides a general framework for a probabilistic-type rep-
resentation of continuous functions in the real interval [0, 1] as quantum opera-
tions in the sense of [24]. Therefore, in the present paper we show that all those
algebraic structures mentioned so far are fully settled into the general model of
quantum computing, based on quantum operations acting on density operators.
The irreversible quantum operational approach has plenty of advantages in the
implementation of quantum computational devices: as Aharonov, Kitaev and
Nisan discussed [1], there are several relevant problems to deal with in the
usual unitary model of quantum computation. Those problems (such as mea-
urements, or noise and decoherence) disappear in the non-unitary (i.e. non-
reversible) model. In fact, although quantum computational processes permit
measurements in the middle of the computation, however, the state of the com-
putation after a measurement is a mixed state. Moreover, to implement quantum
computers, noise and, in particular, decoherence are important obstacles. The
main problem in this interface between quantum physics and quantum compu-
tation models is that quantum noise and decoherence are non-unitary operations
that cause a pure state to become a mixed state.
In this note, we propose a simple construction on density matrices (dubbed \textit{poly-
nomial operations}) that permits to resort, in terms of probability distributions,
to a Stone-Weierstrass type theorem. That result implies that any continuous
function can be regarded, from a probabilistic point of view, and up to a certain
approximation, as a quantum operation, Theorems 3.3 and 3.4. The results
are organized as follows: in Section 2. we provide all the basic notions, in Sec-
tion 3. we show an overview of a probabilistic version of the Stone-Weierstrass
theorem in the framework of quantum operations (further detalis are showed in
[11]), in Section 4. some applications of our main result to the case of prod-
uct MV-algebra [28] are given, and lastly in Section 5. some possible future
investigation issues are illustrated and a few conclusive remarks drawn.

2. Basic notions

A quantum system in a pure state is described by a unit vector in a Hilbert space. In the Dirac notation a pure state is denoted by $|\psi\rangle$ ($\langle\psi|\rangle$). A quantum bit or qubit, the fundamental concept of quantum computation, is a pure state in the Hilbert space \mathbb{C}^2. The standard orthonormal basis $\{|0\rangle, |1\rangle\}$ of \mathbb{C}^2 is called the logical basis. Thus a qubit $|\psi\rangle$ may be written as a linear superposition of the basis vectors with complex coefficients $|\psi\rangle = c_0|0\rangle + c_1|1\rangle$ with $|c_0|^2 + |c_1|^2 = 1$.

Quantum mechanics reads out the information content of a pure state via the Born rule, according to which the probability value assigned to a qubit is defined as follows:

$$p(|\psi\rangle) = |c_1|^2.$$
trary density matrix ρ in terms of a tensor products of the Pauli matrices:

$$
\begin{align*}
\sigma_0 &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} & \sigma_x &= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & \sigma_y &= \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} & \sigma_z &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\end{align*}
$$

in the following way:

$$
\rho = \frac{1}{2^n} \sum_{\mu_1 \cdots \mu_n} P_{\mu_1 \cdots \mu_n} \sigma_{\mu_1} \otimes \cdots \otimes \sigma_{\mu_n},
$$

where $\mu_i \in \{0, x, y, z\}$ for each $i \in \{1, \ldots, n\}$. The real expansion coefficients $P_{\mu_1 \cdots \mu_n}$ are given by $P_{\mu_1 \cdots \mu_n} = \text{tr}(\sigma_{\mu_1} \otimes \cdots \otimes \sigma_{\mu_n} \rho)$. Since the eigenvalues of the Pauli matrices are ± 1, the expansion coefficients satisfy the inequality $|P_{\mu_1 \cdots \mu_n}| \leq 1$. In what follows, for sake of simplicity, we will use without distinction I or σ_0. We denote by $D(\otimes^n \mathbb{C}^2)$ the set of all density operators of $\otimes^n \mathbb{C}^2$; hence the set $\mathcal{D} = \bigcup_{n \in \mathbb{N}} D(\otimes^n \mathbb{C}^2)$ will be the set of all possible density operators. Moreover, we can identify in each space $D(\otimes^n \mathbb{C}^2)$ two special operators $P_0^{(n)} = \frac{1}{2^n} I^n \otimes P_0$ and $P_1^{(n)} = \frac{1}{2^n} I^n \otimes P_1$ that represent, in this framework, the falsity-property and the truth-property, respectively. The probability of truth p of a density operator ρ is dictated by the Born rule and equals

$$
p(\rho) = \text{tr}(P_1^{(n)} \rho).
$$

In case $\rho = |\psi\rangle \langle \psi|$, where $|\psi\rangle = c_0 |0\rangle + c_1 |1\rangle$, then $p(\rho) = |c_1|^2$.

Let $\rho \in D(\mathbb{C}^2)$. Then ρ can be represented as a linear superposition $\rho = \frac{1}{2}(I + r_x \sigma_x + r_y \sigma_y + r_z \sigma_z)$, where r_x, r_y, r_z are real numbers such that $r_x^2 + r_y^2 + r_z^2 \leq 1$. Therefore, every density operator ρ in $D(\mathbb{C}^2)$ has the matrix representation:

$$
\rho = \frac{1}{2} \begin{pmatrix} 1 + r_z & r_x - ir_y \\ r_x + ir_y & 1 - r_z \end{pmatrix} = \begin{pmatrix} 1 - \alpha & \beta \\ \beta^* & \alpha \end{pmatrix}
$$

(1)

Furthermore, any real number λ ($0 \leq \lambda \leq 1$) uniquely determines a density operator as follows:

$$
\rho_\lambda = (1 - \lambda)P_0 + \lambda P_1 = \frac{1}{2}(I + (1 - 2\lambda) \sigma_z) = \begin{pmatrix} 1 - \lambda & 0 \\ 0 & \lambda \end{pmatrix}
$$

(2)

In virtue of (1) and (2), one may verify that, whenever $\rho \in D(\mathbb{C}^2)$, then $p(\rho) = \frac{1 - r_z}{2}$ and $p(\rho_\lambda) = \lambda$. Thus each density operator ρ in $D(\mathbb{C}^2)$ can be written as
\[\rho = \begin{pmatrix} 1 - p(\rho) & a \\ a^\dagger & p(\rho) \end{pmatrix} \]

(3)

In the usual model of quantum computation the state of a system is pure and the operations *(quantum gates)* are represented by unitary operators. Nevertheless, in case a system is not completely isolated from the environment its evolution is, in general, irreversible. A model of quantum computing that relates to that phenomenon is mathematically described by means of *quantum operations* (as quantum gates) acting on density operators (as information quantities).

Given a finite dimensional complex Hilbert space \(H \), we will denote by \(\mathcal{L}(H) \) the vector space of all linear operators on \(H \). Let \(H_1, H_2 \) be two finite dimensional complex Hilbert spaces. A *super operator* is a linear operator \(\mathcal{E} : \mathcal{L}(H_1) \rightarrow \mathcal{L}(H_2) \) sending density operators to density operators [2]. This is equivalent to say that \(\mathcal{E} \) is trace-preserving and positive, i.e. sends positive semi-definite Hermitian operators to positive semi-definite Hermitian operators. A super operator \(\mathcal{E} \) is said to be a *quantum operation* iff the super operator \(\mathcal{E} \otimes I_H \) is positive, where \(I_H \) is the identity super operator on an arbitrary finite dimensional complex Hilbert space \(H \). In this case \(\mathcal{E} \) is also called *completely positive*. The following theorem, dued to K. Kraus [24], provide an equivalent definition of quantum operations:

Theorem 2.1. A linear operator \(\mathcal{E} : \mathcal{L}(H_1) \rightarrow \mathcal{L}(H_2) \) is a quantum operation iff \(\forall \rho \in \mathcal{L}(H_1) \):

\[\mathcal{E}(\rho) = \sum_i A_i \rho A_i^\dagger \]

for some set of operators \(\{A_i\} \) such that \(\sum_i A_i^\dagger A_i = I \).

3. A probabilistic Stone-Weierstrass type theorem

The aim of the present section is to propose a representation, in probabilistic terms, of a particular class of polynomials via quantum operations. Such a result will be expedient to prove a probabilistic Stone-Weierstrass type theorem. First of all, let us introduce some notations and preliminary definitions. The term *multi-index* denotes an ordered \(n \)-tuple \(\alpha = (\alpha_1, \ldots, \alpha_n) \) of non negative integers.
The order of α is given by $|\alpha| = \alpha_1 + \ldots + \alpha_n$. If $x = (x_1, \ldots, x_n)$ is an n-tuple of variables and $\alpha = (\alpha_1, \ldots, \alpha_n)$ a multi-index, the monomial x^α is defined by $x^\alpha = x_1^{\alpha_1}x_2^{\alpha_2}\ldots x_n^{\alpha_n}$. In this language a real polynomial of order k is a function $P(x) = \sum_{|\alpha| \leq k} a_\alpha x^\alpha$ such that $a_\alpha \in \mathbb{R}$.

Let $x = (x_1, \ldots, x_n)$ and k be a natural number. If we define the set $D_k(x)$ as follows:

$$D_k(x) = \{(1-x_1)^{\alpha_1}x_1^{\beta_1} \ldots (1-x_n)^{\alpha_n}x_n^{\beta_n} : \alpha_i + \beta_i = k, \ i \in \{1, \ldots, n\}\},$$

then we obtain the following useful lemmas:

Lemma 3.1. Let X_1, \ldots, X_n be a family of matrices such that

$$X_i = \begin{pmatrix} 1-x_i & b_i \\ b_i^* & x_i \end{pmatrix}$$

and let $X = \otimes^k X_1 \otimes (\otimes^k X_2) \otimes \cdots \otimes (\otimes^k X_n)$. Then

$$\text{Diag}(X) = D_k(x_1, \ldots, x_n).$$

Proof. It can be verified that $\otimes^k X_i = \{h_1h_2\ldots h_k : h_j \in \{(1-x_i), x_i\}, 1 \leq j \leq k\} = \{(1-x_1)^{\alpha}x_1^{\beta} : \alpha + \beta = k\}$. Thus, $(\otimes^k X_1) \otimes (\otimes^k X_2) \otimes \cdots \otimes (\otimes^k X_n) = \{(1-x_1)^{\alpha_1}x_1^{\beta_1} \ldots (1-x_n)^{\alpha_n}x_n^{\beta_n} : \alpha_i + \beta_i = k, \ i \in \{1, \ldots, n\}\}$. Whence our claim follows. \hfill \square

Lemma 3.2. Let $x = (x_1, \ldots, x_n)$ and k be a natural number. For any monomial x^α, such that $|\alpha| \leq k$, the following conditions hold:

1. $x^\alpha = \sum_{y \in D_k(x)} \delta_y y$;
2. $1 - x^\alpha = \sum_{y \in D_k(x)} \gamma_y y$;

where δ_y and γ_y are in $\{0, 1\}$.

Proof. First, let us define, for any $i \in \{1, \ldots, n\}$, a matrix X_i as follows

$$X_i = \begin{pmatrix} 1-x_i & 0 \\ 0 & x_i \end{pmatrix}$$
CONTINUOUS FUNCTIONS AS QUANTUM OPERATIONS: A PROBABILISTIC APPROXIMATION

1) Let $x^\alpha = x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_n^{\alpha_n}$ such that $|\alpha| \leq k$. Thus, there are s_1, \ldots, s_n such that $\alpha_i + s_i = k$. Let $W = (\otimes^s X_1) \otimes (\otimes^s X_2) \otimes \cdots \otimes (\otimes^s X_n)$ and consider the matrix Wx^α. In view of Lemma 3.1, $\text{Diag}(Wx^\alpha) \subseteq D_k(x_1, \ldots, x_n)$ since every element in $\text{Diag}(Wx^\alpha)$ is a monomial of order nk. Further, since $\text{tr}(Wx^\alpha) = 1 x^\alpha = x^\alpha$, we obtain $x^\alpha = \text{tr}(Wx^\alpha)$, i.e. the required polynomial expansion.

2) Let $X = (\otimes^k X_1) \otimes (\otimes^k X_2) \otimes \cdots \otimes (\otimes^k X_n)$. By Lemma 3.1 $\text{Diag}(X) = D_k(x_1, \ldots, x_n)$ and $\text{tr}(X) = 1$. Upon recalling that $x^\alpha = \sum_{y \in D_k(x)} \delta_y y$, we define $\gamma_y = 1$ if $\delta_y = 0$ and $\gamma_y = 0$ if $\delta_y = 1$. Therefore,

\[
1 = \text{tr}(X) = \sum_{y \in D_k(x)} \delta_y y + \sum_{y \in D_k(x)} \gamma_y y = x^\alpha + \sum_{y \in D_k(x)} \gamma_y y
\]

and $1 - x^\alpha = \sum_{y \in D_k(x)} \gamma_y y$

\[\Box\]

In virtue of the previous claims, we can prove a technical but rather important theorem:

Theorem 3.3. Let $x = (x_1, \ldots, x_n)$ be an n-tuple of variables, and let $P(x) = \sum_{y \in D_k(x)} a_y y$ be a polynomial such that $y \in D_k(x)$, $0 \leq a_y \leq 1$ and the restriction $P(x) \mid_{[0,1]^n}$ be such that $0 \leq P(x) \mid_{[0,1]^n} \leq 1$. Then there exists a polynomial quantum operation $\mathcal{P} : \mathcal{L}(\otimes^k \mathbb{C}^2) \rightarrow \mathcal{L}(\otimes^k \mathbb{C}^2)$ such that, for any n-tuple $\sigma = (\sigma_1, \ldots, \sigma_n)$ in $\mathcal{Q}(\mathbb{C}^2)$,

\[p(\mathcal{P}((\otimes^k \sigma_1) \otimes \cdots \otimes (\otimes^k \sigma_n))) = P(p(\sigma_1), \ldots, p(\sigma_n)).\]

Moreover,

\[\mathcal{P}((\otimes^k \sigma_1) \otimes \cdots \otimes (\otimes^k \sigma_n)) = \left(\frac{1}{2^{nk-1}} \otimes^{nk-1} I\right) \otimes P(p(\sigma_1), \ldots, p(\sigma_n)).\]
Proof. Let \(\sigma_1, \ldots, \sigma_n\) be density operators on \(\mathbb{C}^2\). Assume that for any \(\sigma_i\)

\[
\sigma_i = \begin{pmatrix}
1 - x_i & b_i \\
b_i^* & x_i
\end{pmatrix}
\]

Hence, \(p(\sigma_i) = x_i\). Evidently, \(\sigma = (\otimes^k \sigma_1) \otimes \cdots \otimes (\otimes^k \sigma_n)\) is a \(2^{nk} \times 2^{nk}\) matrix and, by Lemma 3.1, \(\text{Diag}(\sigma) = D_k(x_1, \ldots, x_n)\). Thus, each \(y \in D_k(x)\) can be seen as the \((i, i)\)-th entry of \(\text{Diag}(\sigma)\). Further, the polynomial \(P(x) = \sum_{y \in D_k(x)} a_y y = \sum_{j=1}^{2^{nk}} a_j y_j\) is such that every \(y_j\) is the \((j, j)\)-th entry of \(\text{Diag}(\sigma)\).

Let, now, \(y_{j_0} \in \text{Diag}(\sigma)\).

a) We want to place the elements of the form \(a_j y_{j_0}\) in the \((2s, 2s)\)-th entries of a \(2^{nk} \times 2^{nk}\) matrix.

Let us consider the \(2^{nk} \times 2^{nk}\) matrix \(A_{2^s j_0} = \sqrt{\frac{1 - a_{j_0}}{2^{nk-1}}} D_{2^s j_0}\) such that \(D_{2^s j_0}\) has 1 just in the \((2s, j_0)\)-th entry and 0 in any other entry. One may verify that \(A_{2^s j_0} \sigma (A_{2^s j_0})^*\) is the required matrix. Moreover:

\[
\sum_{2^s} A_{2^s j_0} \sigma (A_{2^s j_0})^* = \frac{1}{2^{nk-1}} \begin{pmatrix}
0 & 0 & 0 & 0 & \ldots \\
0 & a_{j_0} y_{j_0} & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & a_{j_0} y_{j_0} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}
\]

b) Let us recall that \(1 = \sum_{y \in D_k(x)} y = \sum_{j=1}^{2^{nk}} y_j\). Then:

\[
1 - \sum_{j=1}^{2^{nk}} a_j y_j = \sum_{j=1}^{2^{nk}} y_j - \sum_{j=1}^{2^{nk}} a_j y_j = \sum_{j=1}^{2^{nk}} (1 - a_j) y_j.
\]

We now want to stick the elements of the form \((1 - a_{j_0}) y_{j_0}\) into the \((2s - 1, 2s - 1)\)-th entries of a \(2^{nk} \times 2^{nk}\) matrix. Let us consider the \(2^{nk} \times 2^{nk}\) matrix \(A_{2^{s-1} j_0} = \sqrt{\frac{1 - a_{j_0}}{2^{nk-1}}} D_{2^{s-1} j_0}\) such that \(D_{2^{s-1} j_0}\) have 1 just in the \((2s - 1, j_0)\)-th entry and 0 in any other entry. Again, one may verify that \(A_{2^{s-1} j_0} \sigma (A_{2^{s-1} j_0})^*\) is the required matrix. Furthermore:
CONTINUOUS FUNCTIONS AS QUANTUM OPERATIONS: A PROBABILISTIC APPROXIMATION

\[\sum_{2s-1} A_{j_0}^{2s-1} \sigma(A_{j_0}^{2s-1})^\dagger = \frac{1}{2^{nk-1}} \begin{pmatrix} (1-a_{j_0})y_{j_0} & 0 & 0 & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ 0 & 0 & (1-a_{j_0})y_{j_0} & 0 & \cdots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \]

Thus, some calculations show that:

\[\mathcal{P} = \sum_{j_0} \sum_{2s} A_{j_0}^{2s} \sigma(A_{j_0}^{2s})^\dagger + \sum_{j_0} \sum_{2s-1} A_{j_0}^{2s-1} \sigma(A_{j_0}^{2s-1})^\dagger \]

\[= \left(\frac{1}{2^{kn-1}} \otimes^{nk-1} I \right) \otimes \begin{pmatrix} 1 - \sum_{j=1}^{2nk} a_j y_j & 0 \\ 0 & \sum_{j=1}^{2nk} a_j y_j \end{pmatrix} \]

Now, set \(A = \sum_{j_0} \sum_{2s} (A_{j_0}^{2s})^\dagger A_{j_0}^{2s} + \sum_{j_0} \sum_{2s+1} (A_{j_0}^{2s+1})^\dagger A_{j_0}^{2s+1} \). Our task is to verify that \(A = I \).

c) First of all, notice that the matrix \((A_{j_0}^{2s})^\dagger A_{j_0}^{2s} \) has the value \(\frac{a_{j_0}}{2^{nk-1}} \) just in the \((j_0, j_0)\)-th entry, while any other entry is 0. Therefore, the matrix \(\sum_{2s} (A_{j_0}^{2s})^\dagger A_{j_0}^{2s} \) has the value \(\frac{2^{nk-1}a_{j_0}}{2^{nk-1}} = a_{j_0} \) in the \((j_0, j_0)\)-th entry and all the other entries equal 0. Hence:

\[\sum_{j_0} \sum_{2s} (A_{j_0}^{2s})^\dagger A_{j_0}^{2s} = \begin{pmatrix} a_1 & 0 & 0 & 0 & \cdots \\ 0 & a_2 & 0 & 0 & \cdots \\ 0 & 0 & a_3 & 0 & \cdots \\ 0 & 0 & 0 & a_4 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \]

d) On the other hand the matrix \((A_{j_0}^{2s-1})^\dagger A_{j_0}^{2s-1} \) has the value \(\frac{1-a_{j_0}}{2^{nk-1}} \) just in the \((j_0, j_0)\)-th entry and 0 in any other. Therefore, the matrix \(\sum_{2s-1} (A_{j_0}^{2s-1})^\dagger A_{j_0}^{2s-1} \) has the value \(\frac{2^{nk-1}(1-a_{j_0})}{2^{nk-1}} = 1 - a_{j_0} \) in the \((j_0, j_0)\)-th entry and any other is 0.
Hence:

\[
\sum_{j_0} \sum_{2s-1} (A_{j_0}^{2s-1})^+ A_{j_0}^{2s-1} = \begin{pmatrix}
1 - a_1 & 0 & 0 & 0 & \cdots \\
0 & 1 - a_2 & 0 & 0 & \cdots \\
0 & 0 & 1 - a_3 & 0 & \cdots \\
0 & 0 & 0 & 1 - a_4 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{pmatrix}.
\]

Thus, \(\sum_{j_0} \sum_{2s}(A_{j_0}^{2s})^+ A_{j_0}^{2s-1} + \sum_{j_0} \sum_{2s-1}(A_{j_0}^{2s-1})^+ A_{j_0}^{2s-1} = I \). Whence, by Theorem 2.1, \(\mathcal{P} \) is a quantum operation.

In virtue of Theorem 3.3, we can now establish a probabilistic version of the classical Stone-Weierstrass theorem.

Theorem 3.4. Let \(x = (x_1, \ldots, x_n) \) be an n-tuple of variables and \(f : [0,1]^n \to (0,1) \) be a continuous function. Then, for each \(\varepsilon > 0 \) there exists a quantum operation \(\mathcal{P} : \mathcal{L}(\otimes^k \mathbb{C}^2) \to \mathcal{L}(\otimes^k \mathbb{C}^2) \) and a constant \(M \geq 1 \) such that, for any density matrix \(\sigma = (\otimes^k \sigma_1) \otimes \cdots \otimes (\otimes^k \sigma_n) \), the following inequality holds:

\[
|p(\mathcal{P}(\sigma)) - \frac{1}{M}f(p(\sigma_1), \ldots, p(\sigma_n))| \leq \varepsilon.
\]

Proof. Let \(f : [0,1]^n \to (0,1) \) be a continuous function. By the classical Stone-Weierstrass theorem, there exists a polynomial \(P_0(x_1, \ldots, x_n) = \sum_{|\alpha| \leq k} a_\alpha x^\alpha \) such that for each \(\varepsilon > 0 \), \(|P_0 - f| \leq \frac{\varepsilon}{2} \). Let \(a_{\alpha_1}, \ldots, a_{\alpha_n} \) be positive coefficients and \(a_{\beta_1}, \ldots, a_{\beta_s} \) be negative coefficients in the polynomial \(P_0(x_1, \ldots, x_n) \). Let \(M \) be a positive real number such that \(\frac{\sum_{i=1}^s |a_{\beta_i}|}{M} \leq \frac{\varepsilon}{2} \). Let us define a polynomial \(P \) by \(P(x_1, \ldots, x_n) = \sum_{i=1}^n \frac{a_{\alpha_i}}{M} x^{\alpha_i} + \sum_{j=1}^s \frac{|a_{\beta_j}|}{M} (1 - x^{\beta_j}) \). Then, we obtain that \(P(x_1, \ldots, x_n) = \frac{1}{M}P_0(x_1, \ldots, x_n) + \frac{\sum_{i=1}^s |a_{\beta_i}|}{M} \). Therefore, in \([0,1]^n\):

\[
|P - \frac{1}{M}f| = |P - \frac{1}{M}P_0 + \frac{1}{M}P_0 - \frac{1}{M}f| \\
\leq |P - \frac{1}{M}P_0| + |\frac{1}{M}P_0 - \frac{1}{M}f| \\
\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{M} \\
\leq \varepsilon.
\]
So, by Lemma 3.2, we obtain that \(P(x) = \sum_{y \in D_k(x)} a_y y \) is such that \(a_y \geq 0 \) and \(0 \leq P(x) \leq 1 \) in \([0,1]^n\). Whence, by Theorem 3.3, there exists a quantum operation \(\mathcal{P} : \mathcal{L}(\otimes^{nk} \mathbb{C}^2) \to \mathcal{L}(\otimes^{nk} \mathbb{C}^2) \) associated to \(P \) such that for each \(n \)-tuple \(\sigma = (\sigma_1, \ldots, \sigma_n) \), with \(\sigma_i \in \mathbb{D}(\mathbb{C}^2) \), \(p(\mathcal{P}((\otimes^k \sigma_1) \otimes \cdots \otimes (\otimes^k \sigma_n))) = P(x_1/p(\sigma_1), \ldots, x_n/p(\sigma_n)). \)

Thus

\[
| p(\mathcal{P}((\otimes^k \sigma_1) \otimes \cdots \otimes (\otimes^k \sigma_n))) - \frac{1}{M} f(p(\sigma_1), \ldots, p(\sigma_n)) | \leq \varepsilon.
\]

\[
\square
\]

4. Representing the standard PMV-operations

In this section we apply the results obtained to two functions (namely, the product \(\bullet \), and the Łukasiewicz conorm \(\oplus \)) of definite importance in fuzzy logic. Let us recall some notions first.

The standard PMV-algebra \([10, 28]\) is the algebra

\[
[0,1]_{PMV} = \langle [0,1], \oplus, \bullet, \neg, 0, 1 \rangle,
\]

where \([0,1] \) is the real unit segment, \(x \oplus y = \min(1,x+y) \), \(\bullet \) is the real product, and \(\neg x = 1 - x \). This structure plays a notable role in quantum computing, in that it describes, in a probabilistic way, a relevant system of quantum gates named Poincarè irreversible quantum computational algebra \([5, 8]\). The connection between quantum computational logic with mixed states and fuzzy logic, comes from the election of a system of quantum gates such that, when interpreted under probabilistic semantics, they turn out in some kind of operation in the real interval \([0,1] \). The above-mentioned PMV-algebra is a structure that represents algebraic counterpart of the probabilistic semantics conceived from the continuous \(t \)-norm. On the other hand, the use of fuzzy logics (and infinite-valued Łukasiewicz logic in particular) in game theory and theoretical physics was pioneered in \([26, 27]\), linking the mentioned structures with Ulam games and \(AF - C^* \)-algebras, respectively. We will pay special attention to the study of the Łukasiewicz \(t \)-norm, due to its relation with Ulam games and its

\[\text{By } x_i/p(\sigma_i) \text{ we mean the attribution of the value } p(\sigma_i) \text{ to the variable } x_i.\]
possible applications to error-correction codes in the context of quantum computation.
Evidently, \neg can be expressed as a polynomial in the generator system $D_1(x)$; whence by Theorem 3.3, it is representable as a polynomial quantum operation. A possible representation can be the following: $\text{NOT}(\rho) = \sigma_x \rho \sigma_x^\dagger$. In fact, $p(\text{NOT}(\rho)) = 1 - p(\rho)$.
Furthermore, \cdot can be represented by a polynomial in the generator system $D_2(x,y)$. According with the construction presented in Theorem 3.3, the following representation obtains. Let us consider the following matrices:

$$
G_1 = \begin{pmatrix}
\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \quad G_2 = \begin{pmatrix}
0 & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \quad G_3 = \begin{pmatrix}
0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
$$

$$
G_4 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \quad G_5 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix} \quad G_6 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
$$

$$
G_7 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
\end{pmatrix} \quad G_8 = \begin{pmatrix}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{\sqrt{2}} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{pmatrix}
$$

One may verify that $\sum_{i=1}^{8} G_i(\tau \otimes \sigma) G_i^\dagger = \frac{1}{2} I \otimes \rho(\tau) \rho(\sigma)$ where $\sigma, \tau \in \mathcal{D}(\mathbb{C}^2)$.
Thus, by Kraus representation Theorem [24], $\sum_{i=1}^{8} G_i(\tau \otimes \sigma) G_i^\dagger$ is a quantum operation, and $p(\sum_{i=1}^{8} G_i(\tau \otimes \sigma) G_i^\dagger) = p(\tau) \cdot p(\sigma)$. That quantum operation represents the well known quantum gate $I\text{AND}$ modulo a tensor power [5, 29].
As regards the Łukasiewicz conorm \oplus, it can be seen that it is not a polynomial, Figure 1.
Therefore, our idea is to obtain a polynomial $P(x,y)$ in some generator system $D_k(x,y)$, such that $P(x,y)$ can approximate the Łukasiewicz sum.
By using numerical methods, we get the following approximating polynomial of \oplus in $[0,1]$:

$$
P(x,y) = \frac{5}{12} x(1-x) + \frac{5}{12} y(1-x) + \frac{5}{12} x(1-y) + \frac{5}{12} y(1-y) + \frac{1}{2} x + \frac{1}{2} y,
$$

whose graph is depicted in Figure 2.
CONTINUOUS FUNCTIONS AS QUANTUM OPERATIONS: A PROBABILISTIC APPROXIMATION

Figure 1: The Łukasiewicz conorm

Figure 2: $P(x, y)$
Let us remark that $0 \leq P(x, y) \leq x \oplus y$. Therefore, $e = \max_{[0,1]} \{(x \oplus y) - P(x, y)\} \leq 0.08$, as Figure 3 shows. Furthermore, one readily realizes that $P(x, y)$ is a polynomial obtained from the generator system $D_2(x, y)$, that also satisfies the hypothesis of Theorem 3..3. Thus, $P(x, y)$ is representable as a polynomial quantum operation \mathcal{P}_\oplus, where

$$p(\mathcal{P}_\oplus(\tau \otimes \sigma)) = (p(\tau) \oplus p(\sigma)) \pm 0.08$$

5. Conclusions and Open problems

In virtue of the results in Section 4., it turns out that the approximation obtained in the case of PMV-algebras is definitely accurate. Further, in [11], authors show a coverage theorem that allows to achieve every degree of accuracy; the price to pay is the increasing of the degree of the approximating polynomial. In our opinion, that is an interesting achievement, since it provides a (quantum) computational motivation for the investigation of algebraic structures equipped with the Łukasiewicz sum and, to a certain extent, it relates “classical” fuzzy
logic to quantum computational logics. Nonetheless, some general remarks on the whole construction are in order as well.

1. If one wants to apply our results to the models of (quantum) computing, efficiency is of central importance. Unfortunately, since the number of copies required in our construction corresponds to the degree of the approximating polynomial, it is impossible to generally specify the dimension of the Hilbert space required to achieve, given a certain ε, the approximating polynomial.

2. Since the work of Ekert and other scholars [22, 20, 19, 9], a direct study of estimations of linear and non-linear functionals of (quantum) states using quantum networks has been proposed. This approach has the advantage that it bypasses quantum tomography, providing more direct estimations of both linear and non-linear functionals of a state. It could be of interest, in our opinion, to investigate if, and in what cases, our construction can be carried out by a quantum network.

Aknowledgements

A. Ledda and G. Sergioli were supported by Regione Autonoma della Sardegna, POR Sardegna FSE-M.S. 2007-2013 L.R. 7/2007.

References

