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Introduction

Standard quantum computing is based on quantum systems described by

finite dimensional Hilbert spaces, specially C2, that is the two-dimensional

space where qbits live. A qubit (the quantum counterpart of the classical
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bit) is represented by a unit vector in C2 and, generalizing for a positive

integer n, n-qubits are represented by unit vectors in ⊗nC2. Similarly to the

classical case, it is possible to study the behavior of a number of quantum

logical gates (hereafter quantum gates, for short) operating on qbits. These

quantum gates are represented by unitary operators.

In3,5 a quantum gate system based on Toffoli gate is studied. This sys-

tem is interesting for two main reasons: (i) it is related to continuous t-

norms,14 i.e., continuous binary operations on the interval [0, 1] that are

commutative, associative, non-decreasing and with 1 as the unit element.

They are naturally proposed in fuzzy logic as interpretations of the conjunc-

tion.13 (ii) A generalization of the mentioned system to mixed states allows

us to connect it with sequential effect algebras,10 introduced to study the

sequential action of quantum effects which are unsharp versions of quantum

events.11,12 However there exists another quantum gate, the Fredkin gate,

whose behavior is similar to the Toffoli gate. Moreover, under particular

conditions, it allows us to represent the same continuous t-norms that Tof-

foli gate. It suggests to introduce a comparison between Toffoli and Fredkin

gates.

The aim of this paper is to study a probabilistic type representation

of Toffoli and Fredkin gates based on  Lukasiewicz negation ¬x = 1 − x,

 Lukasiewicz sum x ⊕ y = min{x + y, 1} and Product t-norms x · y in the

framework of quantum computation with mixed states and to establish

a comparison between both. Note that, the interval [0, 1] equipped with

the operations 〈⊕, ·,¬〉, defines an algebraic structure called product MV -

algebra (PMV -algebra for short).17 In our representation, circuits made

from assemblies of Toffoli and Fredkin gates, can be probabilistically repre-

sented as 〈⊕, ·,¬〉-polynomial expressions in a PMV -algebra. In this way,

PMV -algebra structure related to Toffoli and Fredkin gates, plays a similar

role than Boolean algebras describing digital circuits.

The paper is organized as follows: in Section 1 we introduce basic notions

of quantum computational logic and we fix some mathematical notation. In

Section 2 we briefly describe the Controlled Unitary Operations, that turn

out to be very useful in the rest of the paper. In Section 3 and in Section 4

fuzzy representations related to Toffoli and Fredkin gates are respectively

provided. In Section 5 we make a comparison between Toffoli and Fredkin

gate.
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1. Basic notions

In quantum computation, information is elaborated and processed by means

of quantum systems. Pure states of a quantum system are described by

unit vectors in a Hilbert space. A quantum bit or qbit, the fundamental

concept of quantum computation, is a pure state in the Hilbert space C2.

The standard orthonormal basis {|0〉, |1〉} of C2 is generally called quantum

computational basis. Intuitively, |1〉 is related to the truth logical value and

|0〉 to the falsity. Thus, pure states |ψ〉 in C2 are superpositions of the basis

vectors with complex coefficients: |ψ〉 = c0|0〉+c1|1〉, where |c0|2+|c1|2 = 1.

In the usual representation of quantum computational processes, a quan-

tum circuit is identified with an appropriate composition of quantum gates,

mathematically represented by unitary operators acting on pure states of a

convenient (n-fold tensor product) Hilbert space ⊗nC2.18 A special basis,

called the 2n-standard orthonormal basis, is chosen for ⊗nC2. More pre-

cisely, it consists of the 2n-orthogonal states |ι〉, 0 ≤ ι ≤ 2n where ι is in

binary representation and |ι〉 can be seen as the tensor product of states

|ι〉 = |ι1〉 ⊗ |ι2〉 ⊗ . . . ⊗ |ιn〉, where ιj ∈ {0, 1}. It provides the standard

quantum computational model, based on qbits and unitary operators.

In general, a quantum system is not in a pure state. This may be caused,

for example, by the non-complete efficiency in the preparation procedure

or by the fact that systems can not be completely isolated from the envi-

ronment, undergoing decoherence of their states. On the other hand, there

are interesting processes that can not be encoded in unitary evolutions. For

example, at the end of the computation a non-unitary operation - a mea-

surement - is applied, and the state becomes a probability distribution over

pure states, or what is called a mixed state. In view of these facts, several

authors1,5,7,8,10 have paid attention to a more general model of quantum

computational processes, where pure states are replaced by mixed states.

In what follows we give a short description of this mathematical model.

To each vector of the quantum computational basis of C2 we may

associate two density operators P0 = |0〉〈0| and P1 = |1〉〈1| that rep-

resent the standard basis in this framework. Let P
(n)
1 be the operator

P
(n)
1 = (⊗n−1I) ⊗ P1 on ⊗nC2, where I is the 2 × 2 identity matrix.

Clearly, P
(n)
1 is a 2n-square matrix. By applying the Born rule, we con-

sider the probability of a density operator ρ as follows:

p(ρ) = tr(P
(n)
1 ρ) (1)

We focus our attention in this probability values since it allows us to es-

tablish a link between Toffoli gate and fuzzy connectives. Note that, in the
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particular case in which ρ = |ψ〉〈ψ| where |ψ〉 = c0|0〉 + c1|1〉, we obtain

p(ρ) = |c1|2. Thus, this probability value associated to ρ is the generaliza-

tion, in this model, of the probability that a measurement over |ψ〉 yields |1〉
as output. A quantum operation15 is a linear operator E : L(H1)→ L(H2)

where L(Hi) is the space of linear operators in the complex Hilbert space Hi

(i = 1, 2), representable as E(ρ) =
∑
iAiρA

†
i , where Ai are operators satis-

fying
∑
iA
†
iAi = I (Kraus representation15). It can be seen that a quantum

operation maps density operators into density operators. Each unitary op-

erator U gives rise to a quantum operation OU such that OU (ρ) = UρU†

for any density operator ρ. In the case in which U is a real unitary operator,

then probability of OU (ρ) is simply given by

p(OU ) = tr(P
(n)
1 · UρU) = tr((UP

(n)
1 U) · ρ). (2)

The model based on density operators and quantum operations is called

“quantum computation with mixed states”. It allows us to also represent

irreversible processes as measurements in the middle of the computation.

The connection between a quantum operation E and continuous t-norms

arises when the generic probability values p(E(−⊗ . . .⊗−) can be described

in terms of the operations 〈⊕, ·,¬〉 defined in the introduction.

Let us define a 〈⊕, ·,¬〉n-polynomial expression as a function f :

[0, 1]n → [0, 1] built only using the three operations 〈⊕, ·,¬〉 and n vari-

ables.

Now we can formally introduce the connection between quantum oper-

ations and continuous t-norms.

Definition 1.1. Let E : L(⊗mC2) → L(⊗rC2) be a quantum operation.

Then E is said to be 〈⊕, ·,¬〉n-representable if and only if there exists a

〈⊕, ·,¬〉n-polynomial expression f : [0, 1]n → [0, 1] and natural numbers

k1, . . . kn satisfying k1 + . . .+ kn = m, such that:

p(E(ρ1 ⊗ . . .⊗ ρn)) = f(p(ρ1), . . . , p(ρn))

where ρi is a density operator in ⊗kiC2.

This definition turns out to be crucial in the fuzzy representations of

Toffoli and Fredkin gates provided in Section 3 and Section 4, respectively.

2. Controlled Unitary Operators

By following the standard construction of controlled operators (see, e.g.,

section 4.3 in18), if U (l) is a unitary l-qubit gate, then the controlled-U
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gate operating on l + 1 qubits assumes the following block-representation:

CU (1,l) =

[
I(l) 0

0 U (l)

]
.

This block representation allows us to end up with the following operational

form of an arbitrary CU (1,l) gate:

CU (1,l) =

[
I(l) 0

0 U (l)

]
=

[
I(l) 0

0 0

]
+

[
0 0

0 U (l)

]
= P0 ⊗ I(l) + P1 ⊗ U (l).

Further, the generalized control unitary CU (m,l) gate is given by:

CU (m,l) = I(m−1) ⊗
[
I(l) 0

0 U (l)

]
= P

(m)
0 ⊗ I(l) + P

(m)
1 ⊗ U (l) (3)

= I(m−1) ⊗
(
P0 ⊗ I(l) + P1 ⊗ U (l)

)
= I(m−1) ⊗ CU (1,l). (4)

As a useful example, in the special case where the unitary operator U

is the well known Not gate defined as Not =

[
0 1

1 0

]
and whose extension

to higher dimensions is given by: Not(l) = I(l−1) ⊗Not, then the notion

of Control −Not gate CNot(m,l) is given by :

CNot(m,l) = P
(m)
0 ⊗ I(l) + P

(m)
1 ⊗Not(l). (5)

3. Fuzzy representation of Toffoli gate

The Toffoli gate, introduced by Tommaso Toffoli,21 is a universal reversible

logical gate, which means that any classical reversible circuit can be built

from an ensemble of Toffoli gates. This gate has three input bits (x, y, z)

and three output bits. Two of the bits, x and y, are control bits that are

unaffected by the action of the gate. The third bit z is the target bit that

is flipped if both control bits are set to 1, and otherwise is left unchanged.

The application of the Toffoli gate to a set of three bits is dictated by:

T (x, y, z) = (x, y, xy+̂z)

where +̂ is the sum modulo 2. The Toffoli gate can be used to reproduce

the classical AND gate when z = 0 and the NAND gate when z = 1.

The classical definition of the Toffoli gate can extended as a quantum

gate in the following way.
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Definition 3.1. For any natural numbers n,m, l ≥ 1 and for any vec-

tors of the standard orthonormal basis |x〉 = |x1 . . . xn〉 ∈ ⊗nC2, |y〉 =

|y1 . . . ym〉 ∈ ⊗mC2 and |z1 . . . zl〉 ∈ ⊗lC2, the Toffoli quantum gate T (m,n,l)

(from now on, shortly, Toffoli gate) on ⊗n+m+lC2 is defined as follows:

T (n,m,l)(|x〉 ⊗ |y〉 ⊗ |z〉) = |x〉 ⊗ |y〉 ⊗ |xnym+̂zl〉.

Taking into account that the Toffoli gate can be interpreted as a Control-

Control-Not gate,9 we have that:

T (n,m,l) = CCNot(n,m,l) = I(n−1) ⊗

[
I(m+l) 0

0 CNot(m,l)

]
= P

(n)
0 ⊗ I(m+l) + P

(n)
1 ⊗ CNot(m,l)

= (I(n) − P (n)
1 )⊗ I(m+l) + P

(n)
1 ⊗

(
(I(m) − P (m)

1 )⊗ I(l) + P
(m)
1 ⊗Not(l)

)
= (I(n+m) − P (n)

1 ⊗ P (m)
1 )⊗ I(l) + P

(n)
1 ⊗ P (m)

1 ⊗Not(l) =

= I(n+m+l) + P
(m)
1 ⊗ P (m)

1 ⊗ (Not(l) − I(l)) .

The following Theorem provides a fuzzy representation founded of the

probability value of the Toffoli gate.

Theorem 3.1. Let ρ, σ, τ be density operators such that ρ ∈ ⊗nC2, σ ∈
⊗mC2 and τ ∈ ⊗lC2. Then

p(T (n,m,l)(ρ⊗ σ ⊗ τ)T (n,m,l)) = (1− p(τ))p(ρ)p(σ) + p(τ)(1− p(ρ)p(σ))

and the quantum operation associated to T (m,n,l) is 〈⊕, ·,¬〉3-representable
by ¬z · x · y ⊕ z · ¬(x · y).
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Proof.

p(T (n,m,l)(ρ⊗ σ ⊗ τ)T (n,m,l)) =

= tr(P
(n+m+l)
1 T (n,m,l(ρ⊗ σ ⊗ τ)T (n,m,l) =

= tr(P
(n,m,l)
1 ((In+m − I(n) ⊗ P (m)

1 )⊗ I(l) +

+ P
(n)
1 ⊗ P (m)

1 ⊗Not(l))(ρ⊗ σ ⊗ τ) · ((I(n+m) − P (n)
1 ⊗ P (m)

1 )⊗ I(l) + P
(n)
1 ⊗ P (m)

1 ⊗Not(l))) =

= tr(((I(n+m) − I(n) ⊗ P (m)
1 )⊗ P (l)

1 +

+ P
(n)
1 ⊗ P (m)

1 ⊗ P (l)
1 Not(l))(ρ⊗ σ ⊗ τ) ·

· ((I(n+m) − P (n)
1 ⊗ P (m)

1 )⊗ I(l) + P
(n)
1 ⊗ P (m)

1 )⊗Not(l))) =

= tr(((I(n+m) − P (n)
1 ⊗ P (m)

1 )⊗ I(l) + P
(n)
1 ⊗ P (m)

1 ⊗Not(l))

((I(n+m) − I(n) ⊗ P (m)
1 )⊗ P (l)

1 +

+ P
(n)
1 ⊗ P (m)

1 ⊗ P (l)
1 Not(l)(ρ⊗ σ ⊗ τ)) =

= tr(((I(n+m) − P (n)
1 ⊗ P (m)

1 )⊗ P (l)
1 +

+ P
(n)
1 ⊗ P (m)

1 ⊗Not(l)P (l)
1 Not(l)(ρ⊗ σ ⊗ τ)) =

= tr((I(n+m) − P (n)
1 ⊗ P (m)

1 )(ρ⊗ σ)⊗ P (l)
1 τ) +

+ tr(P
(m)
1 ρ⊗ P (m)

1 ρ⊗ P (l)
0 τ) =

= tr((I(n+m) − P (n)
1 ⊗ P (m)

1 )(ρ⊗ σ))tr(P
(l)
1 τ) +

+ tr(P
(n)
1 ρ)tr(P

(m)
1 σ)tr(P

(l)
0 τ) =

= (1− p(ρ)p(σ))p(τ) + p(ρ)p(σ)(1− p(τ)).

Since p(T (n,m,l)(ρ ⊗ σ ⊗ τ)T (n,m,l)) ≤ 1, then the expression (1 −
p(ρ)p(σ))p(τ)+p(ρ)p(σ)(1−p(τ)) = (1−p(ρ)p(σ))p(τ)⊕p(ρ)p(σ)(1−p(τ)).

In this way, we simply obtain that the quantum operation associated to

T (m,n,l) is 〈⊕, ·,¬〉3-representable by ¬z · x · y ⊕ z · ¬(x · y).

4. Fredkin gate and its fuzzy representation

The Fredkin gate, introduced by Edward Fredkin,6 is another example of

universal reversible classical logic gate.

Also Fredkin is a ternary gate, implementing a Controlled-Swap opera-

tion. More precisely, let (x, y, z) be a 3-bits input state. The first bit, say

x, is taken to be the control bit, remaining unaffected by the action of the

gate. The second and the third bits, say y and z, are the target bits that are

swapped if the control bit x is set to 1; they remain unchanged otherwise.

Fomally:

F (x, y, z) = (x, y +̂x(y +̂ z), z +̂x(y +̂ z)) , (6)



November 14, 2017 18:24 WSPC - Proceedings Trim Size: 9in x 6in FredkinProceed

8

where, once again, +̂ is the addition modulo 2 (equivalent to the XOR

operation of the classical sharp logic).

Let us notice that the Fredkin can reproduce the classical AND gate

(i.e., when zin = 0, zout = xin · yin ), the classical NOT gate (i.e., when

yin = 0, zin = 1 zout = xin+̂1) and the classical OR gate (i.e., when

zin = 1 then yout is the OR between xin and yin).

Also the Fredkin gates can also be naturally extended as a quantum

gate in the following way.

Definition 4.1. Let |x〉 = |x1, x2, . . . , xn〉, |y〉 = |y1, y2, . . . , ym〉 and |z〉 =

|z1, z2 . . . , zl〉 be vectors of the standard orthonormal basis in ⊗nC2, ⊗mC2

and ⊗lC2, respectively. Then, the quantum Fredkin gate is defined by the

following equation:

F (n,m,l)|x, y, z〉 = |x〉|y1 . . . ym−1, ym +̂xn(ym+̂zl)〉|z1 . . . zl−1, zl +̂xn(ym+̂zl)〉.

We also notice that, similarly to the Toffoli gate, also the Fredkin gate is

a control unitary gate. Hence, it can be represented by using the argument

given in Section 2. This unitary gate is the quantum SWAP (m,l) gate.

Note that SWAP (m, l) is a linear operator that swaps the last qubit

(i.e., mth qubit) of the its first input with the last qubit (i.e., lth bit) of

its second input.18,22 Formally, for every state |y1, . . . , ym, z1, . . . , zl〉 of the

computational basis:

SWAP (m, l)|y1, . . . , ym〉|z1, . . . , zl〉 = |y1, . . . , ym−1, zl〉|z1, . . . , zl−1, ym〉 .
(7)

In order to introduce a matrix representation of the F (n,m,l) gate, we

first need to provide a matrix form of the SWAP (m,l) gate.

SWAP (1 , 1) =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 =

[
P0 L1

L0 P1

]
, (8)

where L1 and L0 are given by L1 ≡ |1〉〈0| and L0 ≡ |0〉〈1|, respectively a.

These operators can be extended to higher dimensions as L
(l)
1 = I(l−1)⊗ L1

and L
(l)
0 = I(l−1) ⊗ L0, respectively. Hence, we end up with the following

aL1 and L0 are well known in atomic physics as Ladder-raising and the Ladder-lowering,
respectively.
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generalization of the Swap gate SWAP (m,l):

SWAP (m, l) = I(m−1) ⊗ SWAP (1 , l) = I(m−1) ⊗

[
P

(l)
0 L

(l)
1

L
(l)
0 P

(l)
1

]
. (9)

By referring to Eq.(3) we easily obtain the generalized quantum Fredkin

gate F (n,m,l) as follows.

F (n,m,l) = CSwap(n,m,l) = I(n−1) ⊗

[
I(m+l) 0

0 SWAP (m, l)

]
(10)

= P
(n)
0 ⊗ I(m+l) + P

(n)
1 ⊗ SWAP (m, l) (11)

= P
(n)
0 ⊗ I(m+l) + P

(n)
1 ⊗ I(m−1) ⊗

[
P

(l)
0 L

(l)
1

L
(l)
0 P

(l)
1

]
(12)

= I(n+m+l) + P
(n)
1 ⊗

(
SWAP (m, l) − I(m+l)

)
. (13)

The following Theorem provides a fuzzy representation founded of the prob-

ability value of the Fredkin gate.

Theorem 4.1. Let ρ, σ, τ be density operators such that ρ ∈ ⊗nC2, σ ∈
⊗mC2 and τ ∈ ⊗lC2. Then

p(F (n,m,l)(ρ⊗ σ ⊗ τ)F (n,m,l)) = (1 − p(ρ)) p(τ) + p(ρ) p(σ)

and the quantum operation associated to F (m,n,l) is 〈⊕, ·,¬〉3-representable
by ¬x · z ⊕ x · y.

Proof. By using the matrix representation of F (n,m,l), we obtain:
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F (n,m,l) · P (n+m+l)
1 · F (n,m,l) =

= I(n−1) ⊗
[(
P0 ⊗ I(m+l) + P1 ⊗ SWAP (m, l)

)
·
(
I(m+l) ⊗ P1

)
·
(
P0 ⊗ I(m+l) + P1 ⊗ SWAP (m, l)

)]

= I(n−1) ⊗


(
(P0 ⊗ I(m+l)) · (I(m+l) ⊗ P1) · (P0 ⊗ I(m+l))

)
+ (P0 · I · P1)⊗ (. . .)

+ (P1 · I · P0)⊗ (. . .)

+ (P1 · I · P1)⊗ (I(m−1) · I(m−1) · I(m−1))⊗ (SWAP (1 , l) · (I ⊗ P (l)
1 ) · SWAP (1 , l))


Let us recall that, P0 · I · P1 = P1 · I · P0 that correspond to the null matrix 0.

Further, SWAP (m, l) = I(m−1) ⊗ SWAP (1 , l).

= I(n−1) ⊗


(P0 · I · P0)⊗ (I(m+l−1) · P (m+l−1)

1 · I(m+l−1))

+ 0

+ 0

+ (P1 · I · P1)⊗ (I(m−1) · I(m−1) · I(m−1))⊗ (SWAP (1 , l) · (I ⊗ P (l)
1 ) · SWAP (1 , l))


Let us recall that, for density matrices A,B,C,D of appropriate dimension, is

SWAP (m, l) ·
(
A(m−1) ⊗B ⊗ C(l−1) ⊗D

)
· SWAP (m, l) = A(m−1) ⊗D ⊗ C(l−1) ⊗B . Hence,

= I(n−1) ⊗
[
P0 ⊗ P (m+l)

1 + P1 ⊗ I(m−1) ⊗ P1 ⊗ I(l)
]

= P
(n)
0 ⊗ I(m) ⊗ P (l)

1 + P
(n)
1 ⊗ P (m)

1 ⊗ I(l)

=
(
I(n) − P (n)

1

)
⊗ I(m) ⊗ P (l)

1 + P
(n)
1 ⊗ P (m)

1 ⊗ I(l).

Therefore, by Eq.(2), the probability value of F (n,m,l)(ρ⊗ σ⊗ τ)F (n,m,l) is

given by:

p(F (n,m,l)(ρ⊗σ⊗τ)F (n,m,l)) = Tr
[ ((

I(n) − P (n)
1

)
⊗ I(m) ⊗ P (l)

1 + P
(n)
1 ⊗ P (m)

1 ⊗ I(l)
)
·(ρ⊗σ⊗τ)

]
which can be reduced in a straightforward manner to

(1 − p(ρ)) p(τ) + p(ρ) p(σ) .

Since p(F (n,m,l)(ρ ⊗ σ ⊗ τ)F (n,m,l)) ≤ 1, then the expression

(1 − p(ρ)) p(τ) + p(ρ) p(σ) = (1 − p(ρ)) p(τ) ⊕ p(ρ) p(σ). In this way,

we have that the quantum operation associated to F (m,n,l) is 〈⊕, ·,¬〉3-

representable by ¬x · z ⊕ x · y.

5. Comparing the Toffoli and Fredkin Quantum Gates

In this Section we show are both Toffoli and Fredkin gate are able to repre-

sent the product t-norm. However, from a physical point of view, Fredking

gate turns out to be more efficient.
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An immediate consequence of the Theorem 3.1 and the Theorem 4.1

is that in the special case where τ = P0 then, for any ρ ∈ ⊗mC2, σ ∈
⊗nC2, τ ∈ C2 is p(T (n,m,1)(ρ ⊗ σ ⊗ P0)T (n,m,1)) = p(F (n,m,1)(ρ ⊗ σ ⊗
P0)F (n,m,1)) = p(ρ) · p(σ). It shows that both quantum gates represent the

product t-norm.

A crucial feature of the classical Fredkin gate, in contrast to the Toffoli

gate, is that the Fredkin gate is logically conservative. This means to say

that the number of 1’s present in the output of the gate is the same as the

number of 1′s in its input. In other words, the parity of bits remains un-

changed during the operation of logically-conservative gates like the Fredkin

Gate.4,19–21

This aspect turns out to be advantageous for building computational

circuits that could dissipate less energy (in comparison to the circuits of

non-conservative gates) during their operational cycles.4,19 This is in the

light of the well known Landauer’s principle, according to which, there is

an unavoidable heat-dissipation-cost associated with every bit of informa-

tion that gets erased. The theoretical lower bound to the heat-generation

of this type is argued to be KBT log 2. This link between the thermody-

namical reversibility and the logical conservativity is due to the well known

statistical-inviolability of the second law of thermodynamics2,4,16,19 follow-

ing a deconstruction of the much debated Maxwell’s demon.

This crucial aspect of the classical conservative gates gets extended to

the quantum gates as follows. Firstly, at a design level, if a gate-module

in a given circuit is logically irreversible (meaning that the information

encoded by the input states is not entirely recoverable by using the output

states alone), then it must be the case that some information about the

input states is lost from the gate-module in question. But, the problem of

weather this information is irreversibly lost or not, depends on the details

of the physical implementation of the gate: this information may either

be irreversibly lost –resulting in heat-dissipation, or be just hidden away

(in a deterministically retrievable manner) in some other module of the

physical circuit. In a similar case, it may not result in a heat generation,

but perhaps costing a memory-resource overhead. The logically reversible

gates would naturally avoid this type of dissipation at the very design-level

itself by leaving a one-to-one correspondence between the output and the

input, thereby keeping all the information about the inputs within the same

specific gate-module.

However, at the level of physical implementation, there is a further pos-

sibility that the operational cycles of even a reversible gate would involve an
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erasure of some bits of information. There are several factors which could

contribute to this information-erasure resulting in dissipation. The main

possible reason for this is as follows: though, in theory, all the memory-states

are ideally expected to be equally probable, at any non-zero temperature,

the memory states of a physical device would be unequally populated fol-

lowing a Boltzman-distribution. This is especially the case of those quantum

systems in which the encoding is done onto the energy states of a quan-

tum system. Therein, in ambient temperatures, the ground state is highly

populated and the exited states are less populated, following a Boltzman

distribution. Further, there is also a natural loss of population from the

exited states (also called as the spontaneous emission). This would make it

necessary that a standard repumping mechanism be incorporated to retain

the memory-states that are encoded using the excited states. These fac-

tors would summarily result in an asymmetry in the operational (thermo-

economical) cost of different memory-states belonging to the same physical

system.

However, there is a possible way of circumventing the above type of

dissipation by using those family gates which are not only logically-reversible

but also logically-conservative, like e.g., the Fredkin gate. The strategy is to

use an encoding of information such that the most recurring bits of an input

is mapped to the most-stable states respectively. Then, the conservativity of

the Fredkin gate would guarantee that the number of excited states remains

unaltered throughout the operational cycles of the gate: the output would

have the same number of excited states as the input was, and hence no

extra stabilization cost is required.

Thusly, following the above arguments, even though all the quantum

gates by construction are reversible, it becomes desirable to design the

circuits based on the logically conservative gates like the Fredkin gate that

has been characterized in the present work.
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13. Hàjek P.: Metamathematics of Fuzzy Logic, Trends in Logic vol 4, Dordrecht,
Kluwer (1998).

14. Klement E. P., Mesiar R., Pap E., Triangular norms, Trends in Logic Vol. 8
(Kluwer, Dordrecht, 2000).

15. Kraus K.: States, effects and operations, Springer-Verlag, Berlin (1983).
16. R. Landauer, “Irreversibility and heat generation in the computing process”,

IBM journal of research and development 5.3, 183-191 (1961).
17. Montagna F.: “Functorial Representation Theorems for MVδ Algebras with

Additional Operators”, J. of Algebra 238, 99-125 (2001).
18. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Informa-

tion, Cambridge University Press, Cambridge (2000).
19. T. Sagawa, “Thermodynamic and Logical Reversibilities Revisited”, Journal

of Statistical Mechanics: Theory and Experiment 3, P03025 (2014).
20. G. Sergioli, H. Freytes, “Fuzzy approach to quantum Fredkin gate”, Journal

of Logic and Computation, forthcoming.
21. T. Toffoli, “Reversible computing”, Proceedings of the 7th Colloquium on

Automata, Languages and Programming, Springer-Verlag London, 632–644
(1980).

22. R. Venkatrama, G. Sergioli, R. Leporini. H. Freytes : “Fuzzy type repre-
sentation of the Fredkin gate in quantum computation with mixed states”,
International Journal of Theoretical Physics 56-12, 3860-3868 (2017).


