Prodotti della ricerca

 
Titolo: Multivariate statistical models for disruption prediction at ASDEX Upgrade
Autori: 
Data di pubblicazione: 2013
Rivista: 
FUSION ENGINEERING AND DESIGN  
Abstract: In this paper, a disruption prediction system for ASDEX Upgrade has been proposed that does not require disruption terminated experiments to be implemented. The system consists of a data-based model, which is built using only few input signals coming from successfully terminated pulses. A fault detection and isolation approach has been used, where the prediction is based on the analysis of the residuals of an auto regressive exogenous input model. The prediction performance of the proposed system is encouraging when it is applied to the same set of campaigns used to implement the model. However, the false alarms significantly increase when we tested the system on discharges coming from experimental campaigns temporally far from those used to train the model. This is due to the well know aging effect inherent in the data-based models. The main advantage of the proposed method, with respect to other data-based approaches in literature, is that it does not need data on experiments terminated with a disruption, as it uses a normal operating conditions model. This is a big advantage in the prospective of a prediction system for ITER, where a limited number of disruptions can be allowed. (C) 2013 Elsevier B.V. All rights reserved.
Handle: http://hdl.handle.net/11584/51362
Tipologia:1.1 Articolo in rivista

File in questo prodotto:
FileDescrizioneTipologiaLicenza 
FUSENG-2013-FDI (1).pdf versione editorialeAdministrator   Richiedi una copia
credits unica.it | accessibilità Università degli Studi di Cagliari
C.F.: 80019600925 - P.I.: 00443370929
note legali | privacy

Nascondi la toolbar