
Web Mining & Computer Vision: New Partners for

Object-based Activity Recognition

Daniele Riboni Marta Murtas

Department of Mathematics and Computer Science, University of Cagliari

via Ospedale 72, I-09122 Cagliari, Italy

Email: riboni@unica.it, murtasmarta@gmail.com

Abstract—In several domains, including healthcare and home
automation, it is important to unobtrusively monitor the activities
of daily living (ADLs) executed by people at home. A popular
approach consists in the use of sensors attached to everyday
objects to capture user interaction, and ADL models to rec-
ognize the current activity based on the temporal sequence of
used objects. However, both knowledge-based and data-driven
approaches to object-based ADL recognition have different issues
that limit their applicability in real-world deployments. Hence,
in this paper, we pursue an alternative approach, which consists
in mining ADL models from the Web. Existing attempts in this
sense are mainly based on Web page mining and lexical analysis.
One issue with those attempts relies on the high level of noise
found in the textual content of Web pages. In order to overcome
that issue, our intuition is that pictures illustrating the execution
of a given activity offer much more compact and expressive
information than the textual content of a Web page regarding the
same activity. Hence, we present a novel method to couple Web
mining and computer vision for automatically extracting ADL
models from visual items. Our method relies on Web image
search engines to select the most relevant pictures for each
considered activity. We use off-the-shelf computer vision APIs
and a lexical database to extract the key objects appearing in
those pictures. We introduce a probabilistic technique to measure
the relevance among activities and objects. Through experiments
with a large dataset of real-world ADLs, we show that our method
significantly improves the existing approach.

I. INTRODUCTION

Activity recognition is a key requirement in several perva-

sive computing domains [1], including smart home automa-

tion, e-health, gaming, manufacturing, pervasive advertising,

and smart cities. Currently, the most popular approach to

activity recognition consists in the use of supervised learning

methods applied to datasets of activities and sensor data [2].

Supervised learning proves to be effective in recognizing

activities characterized by specific postures or motions, such

as physical activities. However, the actual applicability of

the supervised approach to complex ADLs (e.g., cleaning,

dressing, eating) is questionable, especially when infrequent

or sporadic activities are taken into account (e.g., “wrap a

gift”, “prepare a lunch box”). Indeed, acquiring large datasets

of activities is expensive in terms of annotation costs [3].

Moreover, activity annotation by an external observer, by

means of cameras or direct observation, violates user privacy.

For this reason, different researchers tried to devise unsu-

pervised methods for recognizing ADLs based on sensor data.

Unsupervised methods rely on a symbolic modeling of activi-

ties in terms of their constituting simpler actions. For instance,

the temporal sequence of events “open medicine cabinet;

take medicine box; put away medicine box; close medicine

cabinet” characterizes the ADL “taking medicines”. A popular

direction is to manually define those models through formal

ontologies expressed in a description logics language [4].

However, manually defining comprehensive ADL ontologies is

cumbersome. Moreover, the ontological approach is generally

based on rigid activity definitions, that fall short in adapting

to dynamic context conditions. An alternative approach relies

on Web mining to automatically infer the activity model

from Web pages regarding that activity. That approach is

generally denoted as Web-based activity mining. In particular,

different works tried to associate an activity with the objects

related to its execution by mining the textual content of Web

pages regarding that activity: by monitoring the use of those

objects through sensors, it would be possible to automatically

reconstruct the activity [5], [6], [7].

One limitation of current Web-based activity mining meth-

ods relies on the high level of noise found in the textual content

of Web pages. To overcome that issue, our research starts from

the intuition that images showing the execution of a given

activity provide more concise and expressive information than

the text of a Web page regarding that activity. For instance,

consider the pictures illustrated in Figure 1, which have been

chosen among the top-10 results of Google Images1 search for

the query “cleaning kitchen”. Those pictures include several

objects (broom, rag, bucket, sink. . . ) typically used to perform

that activity. Moreover, they capture different ways to perform

the same activity. Note that the pictures concentrate on the key

objects regarding that activity, disregarding irrelevant ones. In

this paper, we aim at taking the Web-based activity mining

approach one step further, by exploiting Web image search

engines and computer vision APIs. To our knowledge, this

is the first work that investigates this direction. The main

contributions of this work are the following:

• We illustrate a novel method to couple Web image search,

computer vision functions, and lexical analysis to extract

the most relevant objects with respect to activities of

interest.

• We introduce a probabilistic weighting scheme to mea-

1https://images.google.com/



Fig. 1. Images related to “cleaning kitchen” retrieved by Google image
search

sure the relevance among activities and objects.

• We present the results of extensive experiments with a

large dataset of real-world ADLs, and show that our

method outperforms the existing Web-based activity min-

ing method based on textual content.

The rest of the paper is structured as follows. Section II

illustrates related work. Section III introduces our method.

Section IV presents the experiments and discusses results.

Section V concludes the paper.

II. RELATED WORK

As explained in the introduction, the supervised learning

approach to the recognition of complex ADLs has different

limitations in terms of generality, applicability, costs, and

privacy. Hence, different efforts have been made in the last

years to devise unsupervised ADLs recognition methods.

In particular, several researchers designed activity ontolo-

gies expressed through description logic languages, possibly

extended with rules, to model ADLs based on their constituting

simpler actions [8], [9], [10]. Activity recognition is based

on the observation of temporal sequences of sensor events

that match the definition of actions defining a given activity.

As explained before, that approach has limits in the rigidity

of activity descriptions and burden of manually defining the

ontological axioms.

A third approach, which aims at taking the best of automatic

activity modeling and unsupervision, consists in mining activ-

ity models from the Web. A first attempt in this sense was due

to Perkowitz et al. in [5] and refined in later works [11], [12].

The approach is illustrated in Fig. 2. The input is an activity

label such as “cleaning kitchen”. The activity label is used as

a query for a Web search engine, to find pages related to that

activity. A genre classification module is used to select only

those pages containing detailed description of that activity.

Then, the textual content of the top k pages is passed to an

Fig. 2. Web-based activity mining method based on Web page text.

object identification module, which exploits a lexical database

to extract the key objects related to the activity. In particular,

part-of-speech (POS) tagging is used to prune terms that do not

refer to objects. A statistical method is used to obtain the set

of top-j related objects; each object is weighted considering

its frequency in the Web pages. Finally, for each object o ∈ O

(O being the set of objects) with weight w, and each activity

a ∈ A (A being the set of activities), the probability of

using o during a is computed. The probability distribution

p(O|A) is used by a generative model to reconstruct the most

probable sequence of activities given an observed sequence

of used objects. That method is unsupervised, except for the

genre classification module that relies on supervised machine

learning.

A similar approach was used by Pentney et al. in [13],

exploiting user-contributed common sense acquired by the

Open Mind Indoor Common Sense project [14]. Gu et al.

presented a different method to extract activity models from

the text of Web pages [15]. In that work, object-use fingerprints

are extracted in terms of contrast patterns, which describe sta-

tistically significant differences in object-use patterns among

any couple of activities. A similar method was used by Palmes

et al. in [6] for both activity recognition and segmentation.

Ihianle et al. propose a method to mine the textual content

of Web pages for identifying the most probable activity given

a temporal sequence of used objects [7]. The most probable

activities are inferred based on a combination of statistical and

ontological reasoning.

Even though they adopt different techniques for inferring

the relevance among objects and activities, to the best of our

knowledge all existing Web-based activity mining methods

rely on textual content only. Instead, in this work we investi-

gate a different approach: exploiting the visual content of Web

pages to derive the activity model.



III. METHODOLOGY AND ALGORITHMS

In this section, we illustrate our methodology to extract

correlations among objects and activities, as well as the

algorithms to implement the method.

A. Methodology

Fig. 3. Our Web-based activity mining method based on image search
and computer vision. Modules highlighted in red (dotted line) are novel or
different from the existing approach based on Web page text. Modules in
white represent external APIs.

Our method is illustrated in Fig. 3. Given an activity label

(e.g., “dish washing”), the first module (Web image search)

queries a Web image search engine to find the top k images

that match the label and satisfy a semantic filtering directive.

The goal of semantic filtering is to prune those images

which are returned by the search engine, but are semantically

unrelated to the activity. Semantic filtering relies on an analysis

of the textual content of the Web page that contains the image.

The top k images are given to the Term extraction module,

which queries a Computer vision API to extract a description

and tags of elements identified in the images. The description

briefly summarizes the image content (e.g., “a person washing

a cup”). Image tags refer to objects and other elements found

in the image (e.g., dish, water, white). Each tag is associated

to a confidence value, which represents the probability that the

element actually appears in the image.

Tags and descriptions of the top k images are passed to the

Object identification module, which applies POS tagging to

keep only those tags that are nouns denoting objects. POS

tagging is applied also to the image description, in order

to extract other tags denoting objects. Tags extracted from

the image description are assigned confidence 1. For each

tag found in an image, we compute a weight based on its

confidence values.

The above procedure is executed for each activity a be-

longing to the set A of considered activities. Finally, weighted

objects from the top k images of each activity are used by the

module for Computing object use probability, which computes

the correlations among objects and activities. In particular, for

each considered activity a, and each object o found in at least

one image, that module estimates p(a|o); i.e., the conditional

probability that the current activity is a given that the used

object is o.

B. Algorithms

The algorithm ObjIdentification implements the modules for

Web image search, Term extraction and Object identification,

shown in Fig. 3. It takes as input an activity label a and the

number k of images to be used to identify the objects related to

the execution of a. The output is the set of identified objects

for each image, together with their respective weight. After

initializing a set imgs to the empty set, the algorithm queries

a Web image search engine and downloads the top k images

that respond to the query ‘a’. Those images are added to imgs.

For each image, a semantic filtering method is used to analyze

the textual content of the Web page containing it, in order

to check whether the image is actually related to the search

query. In its simplest form, the method checks whether the

Web page contains the text ‘a’: if not, the image is removed

from imgs. At the first step, if any image is removed, the size

of imgs is less than k. Hence, the algorithm queries the image

Web search engine to download other k images, and applies

semantic filtering. This process is repeated until imgs contains

at least k images. Then, the algorithm selects the top k images

according to the order of selection by the search engine.

For each image imgi, the algorithm queries a visual analysis

API to get a set of tags referring to entities appearing in imgi,

as well as a textual description of the image content. Each tag

is associated to a confidence value, ranging from 0 to 1, which

represents the probability of that entity to actually appear in

imgi according to the computer vision algorithm. For each tag,

the algorithm queries a POS tagger to get its lexical category

(object, plant, animal, etc.); those tags that do not refer to

objects or artifacts are removed from the set of tags. Then,

the POS engine is queried to extract additional terms from the

image description. Terms not referring to objects or artifacts

are discarded. For each remaining term, the algorithm checks

whether it appears as the label of any tag of the image. If so,

the confidence of that tag for the image is set to 1. Otherwise,

a new tag with that label is created for that image, and its

confidence value is set to 1. Finally, the set Ta of weighted

tags sets tags1, . . . , tagsk obtained from the top k images is

returned.

The algorithm ObjProb implements the module for Com-

puting object use probability shown in Fig. 3. It takes as

input the set of considered activity labels a1, . . . , an and

the number k of images per activity. The output is the set

of conditional probabilities p(aj |oi), for each activity aj
and object oi. At first, for each aj , the algorithm executes

the ObjIdentification(aj , k) algorithm to get the set Taj
=

{tags1, . . . , tagsk} of weighted tags sets associated to aj .

For each tag of each tags set tagsi, the algorithm assigns



the tag’s confidence tag.conf to p(tag.label, aj , i). The latter

is the probability of observing the object corresponding to the

tag’s label in the ith image of aj . Then, for each activity aj
and each object oi, the algorithm computes the conditional

probability p(aj |oi) according to the following formula:

p(aj |oi) =

∑
l

p(oi, aj , l)

∑
m,l

p(oi, am, l)

Finally, the algorithm returns the conditional probability

distribution P (A|O), where A is the set of activities and O is

the set of objects.

IV. EXPERIMENTAL EVALUATION

In order to validate our approach, we performed extensive

experiments with a real-world dataset of ADLs executed in

a smart home. We compared our method with an existing

Web-based activity mining method, which relies on Web page

search and lexical analysis. To provide the possibility to

replicate the experiments, we publish our code online2.

A. Experimental setup

In our experiments, we used the well-known dataset of

Cook et al. [16], [17], named CASAS, which includes both

interleaved and sequential ADLs executed in a smart-home by

twenty-one subjects3. Sequential activities are pre-segmented,

while interleaved activities are not. Since, in the real world,

people perform activities in an interleaved fashion, we limit

our attention to the recognition of interleaved ADLs. Sensors

collected data about movement, presence in specific home

locations, temperature, use of water, interaction with objects,

doors, phone; 70 sensors were used in total. In our work, we

considered only 24 out of 70 sensors. Indeed, the other sensors

(mostly presence sensors) were not associated to the use of

objects or furniture.

The dataset considers eight activities, whose labels are

reported in Table I. The order and time taken to perform

the activities were up to the subject. Activities were executed

naturalistically by a single subject at a time. In the dataset,

each sensor activation (e.g., “fridge opened”, “cup moved”)

is labeled with the timestamp of the event, and with the

current activity executed at that timestamp. Given the tem-

poral sequence of sensor activations, the goal of the activity

recognition system is to reconstruct the current activity at each

activation.

B. Activity mining using text and lexical analysis

In order to compare our method with existing Web-based

activity mining ones, we have developed a method based

on Web page search and lexical analysis similar to the one

illustrated in Figure 2. The algorithms were implemented in

Python. For each activity label, we downloaded the first k Web

pages found by Google Search. We fixed k to 15, because

we experimentally found that it was the optimal value. For

2http://people.unica.it/danieleriboni/python code/
3http://ailab.wsu.edu/casas/datasets/adlinterweave.zip

each Web page, we saved the content of the 〈body〉 element.

For each word in the body, we looked for its POS category

using WordNet; i.e., a lexical database of English nouns, verbs,

adjectives and adverbs [18]. We queried WordNet using its

API called Natural Language Toolkit (NLTK)4, which allows,

among other things, to find the POS of words. We saved only

those words that are objects or artifacts, and we computed

the number of occurrences and the weight of every word.

The weight is computed as the probability of that word to

actually be a noun (# of senses of that word that are noun

/ total # of senses of that word). For each word we found

its synonyms (they also have to be objects or artifacts),

for making the technique as flexible as possible. Finally,

we computed the “object-use probability” according to the

algorithm ObjProb explained in Section III-B, but considering

weighted tag sets extracted from Web page text instead of

images. Note that, differently from the technique presented

in [11], we compute the distribution of p(activity|object), since

we use a discriminative activity recognition algorithm.

C. Activity mining using images and computer vision

We implemented our algorithms, presented in Section III-B,

in Python. Based on the activity label, we downloaded the top

k pictures from Google Images (they have to be photos of

medium dimensions). Also in our case, k was experimentally

set to 15. For the sake of this paper, we did not implement

the semantic filtering module; i.e., we kept all images irre-

spectively of the Web page textual content. Then, we used

the Computer Vision APIs of Microsoft Cognitive Services5

to get the set of tags identified in every image. Tags may be

objects or other features describing the image content, such as

“indoor”, or “yellow”. In order to retain only nouns referring

to artifacts or objects, we used the NLTK APIs, applying the

same method described in Section IV-B. Each tag returned by

the computer vision APIs is associated to a confidence value

in (0; 1]. For every activity a and object o, we computed the

conditional probability p(a|o) according to algorithm ObjProb.

D. Activity recognition method

In our experiments, given a temporal sequence of sen-

sor events 〈e1, e2, . . . , en〉 and their respective timestamps

〈t1, t2, . . . , tn〉, the objective of activity recognition is to

reconstruct the current activity at each ti. We denote by O

the set of objects whose use is monitored by the smart home

sensors, and by A the set of considered activities. Each event

ej captures the interaction with an object o(ej) ∈ O at tj
during the execution of an activity.

For the sake of this work, we devised a simple activity

recognition method, which considers the conditional prob-

abilities p(A|O) and a fixed-length sliding window of the

n most recent events. In particular, for each timestamp tj
(j ≥ n) and for each activity a ∈ A, we compute the weight

w(a, tj), which is the temporally smoothed product of the

4http://www.nltk.org/
5https://www.microsoft.com/cognitive-services/en-us/computer-vision-api



conditional probability of a being the current activity at tj ,

tj−1, . . . , tj−n+1. Formally:

w(a, tj) =
∏

k=j−n+1...j

p(a|o(ej)) · c
j−k,

where c ∈ (0, 1] is the temporal smoothing factor, used to give

more relative weight to the recent events. Given the weights

computed for each activity at tj , the predicted activity pred(tj)
is the one that maximizes the weight; formally:

pred(tj) = a ∈ A such thatw(a, tj) = max
a∈A

{w(a, tj)}.

E. Results and discussion

We evaluated the prediction’s quality in terms of the stan-

dard measures of precision, recall and F1 score; the latter is

the harmonic mean of precision and recall. Since the methods

are unsupervised, we did not use cross-validation. In the first

experiments, we set the temporal smoothing factor c to 1;

i.e., no temporal smoothing. We varied the size n of the

sliding window from 1 to 10. Results are shown in Fig. 4.

The best results are obtained using relatively small values of

n. With no temporal smoothing, our image-based method sig-

nificantly outperformed the text-based method (F1 = 0.6876
vs F1 = 0.6018).

Then, for each method, we fixed the size n of the sliding

window, and tried different values of temporal smoothing

factor c from 0.1 to 1. Fig. 5 reports the results. With the

text-based method, we obtained the best results fixing n = 2.

The highest F1 score 0.5998 was obtained with c = 0.8.

With our image-based method, the highest F1 score 0.6988
was obtained with n = 3 and c = 0.5. In general, with both

methods, the influence of temporal smoothing was limited.

Table I reports the average precision, recall and F1 score for

each activity. We found some activities (especially, “watering

plants”, “answering the phone”, and “hoovering”) hard to

recognize, mainly due to the lack of sufficient information

about objects usage in the dataset for those activities, which

determined low recall values. Precision was reasonably good

with most activities. However, the precision of “watering

plants” was low. Indeed, as shown by the confusion matrix in

Table II, that activity was frequently confused with “preparing

soup”. Those errors happened because both activities involve

the use of the same or similar tools (e.g., sinks and water

containers). We claim that this is an intrinsic limit of object

based-activity recognition; it is not due to the specific method

used to define object-based activity models. This problem

can be mitigated by considering additional smart objects that

can better characterize the activities. With most activities, the

values of recall were lower than those of precision. The reason

is that some objects had weight 0 for every activity; hence,

activities in which they were used were assigned to class null

(last column of the confusion matrix).

A comparison with other activity recognition techniques

using the same dataset indicates that our results are promising.

The Hidden Markov Model method used in [16] achieved

average F1 = 0.700; our method achieved essentially the same

TABLE I
AVERAGE PRECISION, RECALL AND F1 SCORE FOR EACH ACTIVITY.

WEB-BASED ACTIVITY MINING USING IMAGES AND COMPUTER VISION.
n = 3, c = 0.5.

activity label precision recall F1 score

a1 fill medicine cabinet 0.9334 0.6132 0.7401

a2 watch television 0.776 0.9241 0.8436

a3 watering plants 0.3418 0.3799 0.3598

a4 answering the phone 0.7907 0.3506 0.4858

a5 diy birthday card 0.7399 0.9464 0.8305

a6 prepare soup 0.7223 0.6224 0.6686

a7 hoovering 0.77 0.237 0.3624

a8 choosing outfit 0.976 0.5365 0.6924

all all activities 0.729 0.6709 0.6988

TABLE II
CONFUSION MATRIX FOR WEB-BASED ACTIVITY MINING USING IMAGES

AND COMPUTER VISION. n = 3, c = 0.5.

classified as → a1 a2 a3 a4 a5 a6 a7 a8 null

a1 84 7 5 0 13 9 3 0 16

a2 0 426 0 0 23 0 0 0 12

a3 0 13 68 2 2 80 0 0 14

a4 0 3 0 34 58 0 0 2 0

a5 1 5 2 0 529 0 0 0 22

a6 5 5 25 5 21 234 12 0 69

a7 0 65 96 0 62 0 77 0 25

a8 0 25 3 2 7 1 8 81 24

score, having the advantage of being unsupervised (no training

set must be acquired). The unsupervised method presented

in [19], based on a hybrid combination of ontological and

probabilistic reasoning, achieved higher accuracy; i.e., average

F1 = 0.781. However, that method adopts an advanced activity

recognition technique, while the method used in this paper was

rather simplistic. Moreover, that hybrid method strongly relies

on manual activity modeling through ontology engineering,

while our method has the advantage of being fully automatic.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a new approach to Web-based

activity mining, which relies on visual information, instead

of textual content. We presented a technique for extracting

relevant activity images from the Web, identifying key objects

through computer vision functions, and computing activity-

object relevance weights. A detailed experimental comparison

with related works shows the potential of our approach.

This work can be extended in several directions. The

technique to select relevant images could be improved by

analyzing the textual content of the Web page in which

they appear. While we used general-purpose computer vision

APIs, object recognition could be improved adopting specific

methods to recognize human-object interaction. Last but not

least, temporal activity information could be extracted by

mining activity data from videos instead of images.
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Fig. 4. Results according to the size n of the sliding windows. No temporal smoothing (c = 1).
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