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Abstract—Several researchers have proposed methods and
designed systems for the automatic recognition of activities and
abnormal behaviors with the goal of early detecting cogni-
tive impairment. In this paper, we propose LOTAR, a hybrid
behavioral analysis system coupling state of the art machine
learning techniques with knowledge-based and data mining
methods. Medical models designed in collaboration with cognitive
neuroscience researchers guide the recognition of short- and long-
term abnormal behaviors. In particular, we focus on historical
behavior analysis for long-term anomaly detection, which is the
principal novelty with respect to our previous works. We present
preliminary results obtained by evaluating the method on a
dataset acquired during three months of experimentation in a
real patient’s home. Results indicate the potential utility of the
system for long-term monitoring of cognitive health.

I. INTRODUCTION

Ubiquitous computing technologies have a recognized po-

tential in supporting independent living and pro-active health-

care. These application areas are becoming strategic for many

international research programmes considering that the senior

population (aged over 65) is projected to double as a percent-

age over the whole population in the next decades [1]. Among

the most frequent threats to independent living is cognitive

decline, whose early symptoms often lead to a Mild Cognitive

Impairment (MCI) diagnosis. According to the International

Working Group on MCI, there are evidences of subtle dif-

ferences in performing instrumental activities of daily living

(IADLs) among MCI patients compared to both healthy older

adults and individuals with dementia [2]. Hence, monitoring of

daily living activities and recognition of abnormal behaviors

may help practitioners to early detect the onset of cognitive

impairment.

Several research projects, and numerous research papers

have tried to detect behavioral markers of MCI onset through

ubiquitous computing technologies, obtaining a correlation

between the predicted and actual cognitive status of the patient.

Some of these approaches require the execution of ability tests

about the performance of IADLs in an instrumented smart

home of a hospital [3]; hence, they incur in high costs and

cannot be applied on a long-term basis. Some of them deploy

cameras and sensor networks in controlled environments and

use video and audio for activity recognition [4]: they are often

perceived as too invasive for the individual’s privacy. Other

works rely on continuous monitoring of low-level behavioral

markers (steps taken, walking speed, . . . ) and trigger alarms

for anomalies whenever they detect situations sufficiently

distant from the expected (modeled) behavior [5]: they provide

little support to the diagnosis, since they do not report fine-

grained descriptions of the anomalies occurred during the

execution of IADLs.

In most of the above mentioned works, the detection of

abnormal behaviors is done on a short-term basis. Other

works derive a model of the patient’s usual behavior from

the activities performed in the past and use this model to

detect anomalies as changes from the usual behavior. In [6], a

method has been proposed to monitor the circadian (24-hours)

variability of the patient’s activities using location sensors

and statistical analysis. In [7] in-home activities and sleep

restlessness were captured using different sensors; changes

in the activity patterns generate health alerts that were sent

to clinicians to be rated for their clinical relevance and used

as ground truth for developing classifiers to recognize rele-

vant alerts. In [8], frequently-occurring temporal relationships

between activities were extracted from the observed history

of sensor events and used to model the probability that a

particular event should or should not occur on a given day. All

these works, however, still consider anomaly detection as the

recognition of a short-term activity pattern as abnormal. What

we propose in this work, instead, is a long-term analysis to

detect significant changes in the trend of performing activities

and to avoid raising alerts for isolated abnormal activities.

In this paper we report our latest results from a research

project aimed to support early detection of mild cognitive

impairment (MCI) for elderly people living independently at

home. We propose a framework called LOTAR characterized

by the following features: a) it heavily relies on indicator

models built by cognitive neuroscience experts, b) it continu-

ously acquire data from non-intrusive sensors deployed in the

patient’s home, c) it features an effective hybrid abnormal be-

havior recognition technique coupling state-of-the-art machine

learning with knowledge-based inferencing, d) it provides

clinicians with a dashboard identifying fine-grained short-term

abnormal behaviors (e.g., inappropriate timing in assuming

food or medicine intake, improper use of equipment, unnec-

essary repetitions of actions), but more importantly showing

automatically recognized long-term abnormal behaviors (e.g.,

changes in habits regarding timing of meal consumption).



The rest of the paper is structured as follows. Section II

presents the model of activities and anomalies. Section III

illustrates the framework and the algorithms for abnormal

behavior recognition. Section IV reports experimental results.

Finally, Section V concludes the paper.

II. MODELING ACTIVITIES AND ABNORMAL BEHAVIORS

In the following we explain how we model human activities,

short-, and long-term abnormal behaviors.

A. Human activities

We model human activities adopting the framework de-

scribed in [9]. In particular, we use an extension of the

OWL 2 [10] ontology presented in that work.1 Each IADL

consists of a sequence of simple actions. For instance, a patient

could perform the IADL “taking medicines” by executing this

sequence of actions: open the medicine repository, retrieve the

medicine box, return the medicine box, and close the medicine

repository. The same activity can be performed by executing

different sequences of actions. Since we focus on IADLs, we

assume that each action corresponds to a manipulative gesture

or other body movement involving an object (e.g., “open the

silverware drawer”, “sit on the kitchen chair’).

B. Short-term abnormal behaviors

By short-term abnormal behaviors we define those behav-

iors observed within a relatively short time period (from a

few seconds to a day) that diverge from the expected ones,

according to a given model provided by clinicians. In this

work we concentrate on anomalies that may indicate the onset

of MCI. We adopt the categorization of behavioral anomalies

proposed in [11]:

• omissions: when an action or a sequence of actions

composing an IADL is not performed (e.g.; “the elderly

forgets to consume a meal after having prepared it”);

• commissions: when actions within an activity are per-

formed inaccurately (e.g.; “putting butter in a non-

refrigerated storage”);

• additions: when actions unnecessary to complete the

current activity are performed (e.g.; “the elderly retrieves

a food item not needed for lunch preparation”).

In order to identify a set of significant anomalies to

be considered in our experimental evaluation, we collabo-

rated with cognitive neuroscience experts from the Institute

Fatebenefratelli2, Lombardy –a leading center in the field

of mental health research and research on neurodegenerative

disorders– within the SECURE3 research project funded by

Lombardy region and MIUR Italian ministry. The considered

anomalies are related to food preparation and consumption,

and adherence to the medical prescriptions, covering the whole

spectrum of the anomaly classification presented above.

1http://webmind.di.unimi.it/care/smartfaber.owl
2IRCCS (Research and Care Institute) St John of God Clinical Research

Centre, Brescia – http://www.irccs-fatebenefratelli.it
3SECURE: Intelligent System for Early Diagnosis and Follow-up at Home,

http://secure.ewlab.di.unimi.it/

C. Long-term abnormal behaviors

Human behaviors are characterized by wide variability;

factors such as contextual conditions, individual habits and

personality traits may determine the execution of various

anomalies that are not necessarily due to cognitive impairment.

Consider, for instance, the anomaly of leaving repositories

open. This may be normally done by cognitively healthy

people for negligence or hastiness. Hence, when considered

in isolation, short-term abnormal behaviors are only weak

indicators of possible cognitive issues. On the contrary, the

frequency of anomalies detected over long periods of time

and their temporal trend are much stronger indicators.

We define as long-term abnormal behaviors those groups

of activities and anomalies, observed over relatively long

periods of time (from one week to several months), showing

significant changes from the normal trend observed in the past,

and which may indicate the onset of cognitive impairment

or the progression of MCI. Long-term abnormal behaviors

are better indicators when personalized, i.e., when specified

with respect to trends observed as ‘normal’ for a specific

patient or patient-profile. In this paper we focus on abnormal

behaviors that emerge from a personalized long-term temporal

analysis of performed activities (e.g., considering time of meal

consumption, duration of meal preparation), since time-related

difficulties in task executions are known to be associated with

MCI onset [12].

III. RECOGNIZING LONG-TERM ABNORMAL BEHAVIORS

In this section, we illustrate the LOng-Term Abnormal

behavior Recognition (LOTAR) recognition framework.

A. Recognition framework

In Figure 1 we show the general architecture of LOTAR.

Its core is composed of two main software modules: (i) the

SmartFABER algorithm takes as input the timestamped sensor

data and the models of abnormal behaviors, and it returns

recognized actions, activities and short-term anomalies; (ii)

the historical behavior analysis module performs historical

data analysis on the output of SmartFABER to identify long-

term abnormal behaviors. The outputs of both short- and long-

term abnormal behavior recognition are transmitted to the e-

HealthCare service, and can be inspected by clinicians through

a Web dashboard.

B. Sensor data acquisition and semantic integration

The sensing infrastructure consists in an unobtrusive sensor

network, which monitors the interaction of the elderly with

the home environment by combining different sensing devices

like environmental sensors, magnetic sensors, presence sensors

and RFID tags. A software layer is in charge of collecting

the data from the sensor network, and performing a semantic

integration of raw detections to recognize the individual’s

actions. In particular, we adopt propositional logic rules to

express conditions about the type of detected raw events,

which determine the recognition of high-level actions. Those

rules may include conditions about the temporal occurrence
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Fig. 1. The LOTAR framework to recognize long-term abnormal behaviors

of raw sensor events. An example is the detection of action

sitting on a chair at the kitchen table as a temporal condition

between raw sensor events revealed by a presence sensor over

the table and a pressure sensor under the chair.

The system assigns a unique timestamp to each recognized

action, based on the timestamps of the corresponding sensor

events. For the sake of interoperability, event types and actions

are represented using our OWL 2 SmartFABER ontology.

C. The SmartFABER algorithm

The SmartFABER algorithm includes both statistical tech-

niques and knowledge-based reasoning. In the following we

briefly describe its main components.

1) Recognizing activity instances: The input of Smart-

FABER’s activity recognition algorithm is the sequence of

recognized timestamped actions. A time-based feature extrac-

tion algorithm is in charge of building, for each action, a

feature vector that represents the sequence of the n most

recent actions. We adopted the feature extraction technique

proposed in [13], since it considers temporal relations between

actions and proved to be effective for recognizing complex

IADLs given a temporal sequence of sensor events. A multi-

class classifier (previously trained using a training set of

activities and corresponding actions) is used to predict for each

feature vector the most probable performed activity. Then, a

post-processing algorithm exploiting temporal and semantic

reasoning is in charge of grouping together all those classified

actions that more likely belong to the same activity instance;

the first (resp. last) action of an activity instance determines the

start- (resp. end-)time of that instance. The activity recognition

technique is presented in detail in [14].

2) Anomaly detection: Inferred activity boundaries are

communicated –together with recognized actions– to a

knowledge-based inference engine to detect short-term anoma-

lies. Our anomaly recognition technique is extensively dis-

cussed in [14]. Essentially, natural language descriptions of

anomalies provided by clinicians are translated in proposi-

tional logic rules and added to the knowledge base. Moreover,

we use our OWL 2 ontology, including a taxonomy of food

items, objects, and furniture, to instantiate context dependent

facts in the knowledge base. In particular, food items are

classified in those that must be refrigerated, and those that

must not. Similarly, cabinets are classified in refrigerated

and non-refrigerated ones. For each instance of food item,

object, and furniture in the ontology, a corresponding fact is

automatically added to the knowledge base. The knowledge

base also contains axioms about medical prescriptions for

medicine intake.

At the end of each day, the inference engine evaluates

the rule-based anomaly definitions considering the inferred

activity instances and actions and the context dependent facts.

Each detected anomaly is represented by the category of the

anomaly, the object (or activity) involved in that anomaly, and

the time instant at which the anomaly has happened.

D. Historical behavior analysis

While what we call short-term anomalies in this paper

identify situations that can be precisely specified and effec-

tively detected through symbolic methods, long-term abnormal

behaviors are characterized by wide inter- and intra-individual

variability; hence, we rely on a personalized statistical ap-

proach to detect them. In our approach, we map the daily

activities of the patient in activity feature vectors, which

succinctly describe some characteristics of interest of the

activities performed during a given period (e.g., one day). The

goal is to statistically monitor the temporal evolution of those

vectors to detect significant changes from the patient’s usual

behavioral pattern.
1) Building activity feature vectors: Of course, the tech-

nique to build activity feature vectors depends on the consid-

ered activities, on their characteristics of interest and on the

patient’s profile. In the following, we illustrate an application

of the technique considering meal preparation activities, where

the characteristics of interest is the temporal distribution of

their occurrences during the day.

Example 1: In order to represent the distribution of meal

preparation activities during a day, we partition the day in

k time slots, not necessarily of equal length, and map each

occurrence of meal preparation to the time slot in which that

activity has ended. Hence, for each day we build an activity

feature vector vi of length k that stores the number of meals

prepared during each time slot during day i. For example, if

we consider the partition:

0: breakfast 5am - 11am

1: morning 11am - 12noon

2: lunch 12noon - 3pm

3: afternoon 3pm - 6pm

4: dinner 6pm - 10pm

5: night 10pm - 5am

vector vi = 〈102010〉 means that “during day i, the patient

prepared one meal within the breakfast slot, two meals within

the lunch slot, and one meal within the dinner slot; he/she did

not prepare any other meal during that day”.



2) Mining for long-term abnormal behaviors: In order

to detect whether there has been any recent change in the

patient’s habits, we compare the activity feature vectors of the

last n days (called current period) with the ones observed in

a preceding period of m days (called baseline period), with

m ≫ n. Note that there is no intersection between the days

in the baseline period and the ones in the current period. We

assume that the baseline period represents the usual behavior

of the patient in a recent past. A frequent pattern mining [15]

algorithm can be applied to the activity feature vectors of

the baseline period B to obtain the set V of typical activity

routines; i.e., those vectors whose frequency in B is equal to

or larger than the support value s. Then, for each day i in the

current period C, we check whether the associated vector vi

appears in V or not. If not, we consider day i as anomalous.

If the rate of anomalous days during C exceeds the threshold

t, we detect a long-term anomaly during C and the algorithm

returns the set of anomalous days in C.

The algorithm pseudo-code for checking if a long-term

abnormal behavior occurred in the current period is shown

in Algorithm 1. Note that F is the set of frequent patterns,

while N is the set of anomalous days. The function set takes

as input a sequence and outputs the set of its elements (without

repetitions). The algorithm is executed using a sliding window

approach: for instance, each day it is executed considering the

last two weeks as the current period, and the previous three

months (last two weeks excluded) as the baseline period.

Input:
C: set of days of the current period; B: set of days of the
baseline period; s: minimum support value for frequent pattern
mining; t: threshold for anomalous days in C; SC , SB

sequences of activities feature vectors associated to the days in
C and B, respectively.

F ← ∅; N ← ∅; S′

B ← set(SB)
forall w ∈ S′

B do

if w appears in SB at least s times then F ← F
⋃
{w}

end
forall vi ∈ SC do

if vi /∈ F then N ← N
⋃
{i}

end
if |N | ≥ t · |SC | then

return N
else return ∅

Algorithm 1: Long-term abnormal behavior detection

3) Extensions to consider periodic routines: Based on the

individual’s profile, the mining algorithm can be refined to

take into account periodic habits and routines. For instance, it

is possible to divide the days used for the analysis into classes

(e.g., working days vs holidays), and apply the algorithm to

each class separately to discover changes in periodic routines

or abnormal behaviors correlated with them.

4) Profile-based calibration of parameters: Parameters s

and t need to be carefully calibrated based on the patient’s

habits. In general, increasing the value of s reduces the number

of activity feature vectors that are considered normal, and

therefore increases the number of days in the current period

detected as anomalous. A higher value of t, instead, will make

the algorithm require a higher portion of abnormal days to

output a long-term anomaly. To effectively run the analysis,

we need to carefully balance those values, so that we can

properly recognize whether the current days are deviating from

the baseline activity pattern.

In the following we explain our approach to calibrate s

and t values. We fix the value s based on the profile of the

patient. If the patient has very regular habits, he/she would

tend to execute very frequently a limited set of routines. In

this case, a relatively high value of s should be chosen, to

include only his/her normal routines in the set of frequent

activity feature vectors. On the contrary, a relatively low

value of s should be chosen when the patient has not very

regular routines, to account for the wide variability of his/her

typical activity patterns. The patient’s profiling can be done

manually by practitioners during the clinical assessment, or by

automatically mining a dataset of the typical activity routines

of the patient. The value of s should be periodically re-

calibrated to account for changes in the patient’s habits.

After fixing s, we initially set the value of t to a default

value, which is currently manually chosen according to the

current cognitive status of the patient. The value of t is

periodically re-calibrated considering the clinical assessment

of the patient.

IV. EXPERIMENTAL EVALUATION

We implemented a prototype of the LOTAR framework and

we extensively evaluated it using a dataset acquired during

three months of experimentation in the home of an elderly

woman diagnosed with MCI. The IADLs that we selected

to validate our method are: taking the prescribed medicines,

preparing a meal and eating a meal.

A. Hardware and software implementation

The sensing infrastructure of LOTAR is composed of several

kinds of sensors that unobtrusively capture the interaction

between the subject and the home environment. Those sen-

sors, which are deployed on various household items, are

listed in Table I. The core software modules of LOTAR

TABLE I
MONITORED HOUSEHOLD ITEMS

Monitored items Related sensors

Medicines boxes, Food items con-
tainers

RFID readers

Medicines cabinet, Fridge, Non-
refrigerated food cabinet, Cooking
pan cabinet, Silverware drawer

Magnetic sensors

Stove Temperature sensor

Kitchen table Presence sensor

Kitchen chair Pressure sensor

are implemented for the Android platform, since the system

is intended to run on a mobile device located inside the

subject’s home. We also developed a Web dashboard, to



allow clinicians inspecting the trend of performed IADLs and

abnormal behaviors.

B. Dataset

We deployed our framework inside the home of a real

patient: an elderly woman aged 74, with early symptoms of

MCI and medical co-morbidities, who lives alone. We acquired

a dataset of 55 days of IADLs performed by the elderly.

A detailed description of the smart home setup is reported

in [16]. The set of considered short-term anomalies were

provided by the clinicians, together with time prescriptions

for meals and medicines assumptions. The clinicians divided

the anomalies in three levels of seriousness: green (e.g.; if a

meal is consumed out of the prescribed time), yellow (e.g.; if a

meal is skipped), and red (e.g.; if a prescribed medicine is not

taken). This classification is orthogonal to the one presented

in Section II. Totally, we collected 181 instances of activities

and 605 short-term anomalies (most of them green and yellow

ones).

Due to privacy issues, it was not feasible to annotate

activities and anomalies by directly observing the elderly

during the execution of the activities, except for a limited

amount of time (mainly during the system setup). The activi-

ties were labeled offline by manually analyzing the collected

raw sensor detections; the IADLs that we considered in this

work are relatively easily discriminable by a human observer.

The anomalies were automatically annotated by running the

corresponding definitions over the collected sensor events,

actions and labeled activities.

C. Activities and short-term anomalies

In order to assess the effectiveness of activity boundaries

and short-term anomaly recognition, we performed an ex-

tensive evaluation of the SmartFABER method. In order to

obtain meaningful measures of the prediction’s quality, we

performed leave-one-day-out cross-validation estimating the

standard measures of precision, recall and F1.

For the activity boundary detection task, we obtained a F1

score slightly above 0.8, with a good balance of precision

and recall. The performance of our algorithm was negatively

affected by noisy sensor measurements (that consist in missing

or incorrect readings), as well as by the wide variability of

IADLs execution patterns of the subject. However, success

rates can improve by considering a larger training set of activ-

ities, and introducing redundancy in the sensor infrastructure.

Of course, anomaly recognition rates depend on the accu-

racy of the activity recognition method. Indeed, fluctuations

in the error rate for different activities may have differently

amplified effects on the recognition of anomalies. Moreover,

there are anomalies that are based on presence or absence of

single actions, not activities. Hence, it is important to evaluate

the accuracy of anomaly recognition against annotated data.

For the anomaly recognition task, we achieved a F1 score of

0.785, obtaining a good balance between precision (0.76) and

recall (0.81).

D. Long-term abnormal behavior recognition

We have applied the technique to recognize long-term

abnormal behaviors (Algorithm 1) using the patient’s dataset

and the meal preparation routines discussed in Section III-D.

We have used the time slots shown in Example 1, which

were calibrated according to the patient’s habits. We have

considered a baseline period (B in Algorithm 1) of 30 days

from 30 October 2014 to 22 December 2014. We had to skip

some days due to temporary failures of the sensor platform

used for the data acquisition. For the sake of simplicity, we

have considered the days in the test period as consecutive,

disregarding skipped days. We have applied our algorithm,

with a temporal sliding window of 7 days (C in Algorithm 1),

over a test period ranging from 10 January 2015 to 15 February

2015, for a total of 32 days. We have used our profile-based

technique for parameter calibration. According to the patient’s

clinical profile, we have set s = 2 and t = 0.5. As explained

in Section III-D, s must be carefully calibrated according to

the personal profile and health status of the subject. In our

case, we have chosen a small value for the support s, since

the subject exhibited large variability in the execution pattern

of activities, probably due to MCI symptoms. The value t

(0 ≤ t ≤ 1) determines the sensibility of the long-term

recognition algorithm: in our experimentation we have chosen

an intermediate value.

The algorithm detected two long term anomalies, one from

12 January to 23 January, and one from 29 January to 6

February. Those intervals are shown in Figure 2 as horizontal

bars. The days that were classified as anomalous by the

algorithm are colored in violet. According to the choice of

parameters, each abnormal interval bar includes at least 4

anomalous days. In order to understand whether those intervals

actually correspond to a period characterized by anomalous

behaviors, we have identified the days in the overall test

period in which the highest number of red anomalies occurred.

We found 5 days in which the patient did 7 or more such

anomalies (identified by a red square in the figure), while in

the other days no more than 5 red anomalies occurred. We

can notice that 4 out of 5 among those days are contained in

the two intervals. We believe that the correlation is significant,

especially considering that our long-term abnormal behavior

recognition algorithm considered meal preparation activities,

while red anomalies regard medicine intake, which are not

related to meal consumption according to the patient’s clinical

prescriptions. However, we point out that more extensive

experiments, carried out with more patients and for longer time

periods, are needed to thoroughly assess the effectiveness of

the algorithm.

We also computed the long-term trend of the occurrences of

short-term abnormal behaviors, using a simple sliding window

approach: for each day in the dataset, we count the number of

anomalies detected in the 15 previous days. Figure 3 shows

a comparison between the results obtained using the LOTAR

technique and the actual ones (i.e., the ground truth). We can

notice that, in general, the amount of anomalies detected with



Fig. 2. Detection of two long-term abnormal behavior intervals with LOTAR
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(b) Yellow anomalies
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Fig. 3. Trend of short-term abnormal behaviors. For each day, the value represents the number of anomalies detected in the previous 15 days.

our technique is close to the ground truth. Moreover, we can

notice that, despite the differences in value, the general trend

is preserved; hence, LOTAR provides the clinicians with a

reliable tool to recognize significant changes in the rate of

anomalies.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have extended our previous work on the

recognition of abnormal behaviors in performing daily activi-

ties with methods for detecting long-term deviations from what

can be considered normality for a specific individual. While

first experimental results seem to validate the effectiveness

of the technique, many aspects deserve further investigation

including modeling different kinds of long-term anomalies,

considering alternative mining algorithms, and extending the

experiments to multiple individuals.
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