Prodotti della ricerca

Titolo: Learning Bayesian Classifiers from Gene-Expression MicroArray Data
Data di pubblicazione: 2006
Citazione: Learning Bayesian Classifiers from Gene-Expression MicroArray Data / BOSIN A; DESSI' N; LIBERATI D; PES B. - 3849(2006), pp. 297-304. ((Intervento presentato al convegno WILF 2005: 6th International Workshop onFuzzy Logic and Applications, tenutosi a Crema, Italy nel September 15-17, 2005.
Abstract: Computing methods that allow the efficient and accurate processing of experimentally gathered data play a crucial role in biological research. The aim of this paper is to present a supervised learning strategy which combines concepts stemming from coding theory and Bayesian networks for classifying and predicting pathological conditions based on gene expression data collected from micro-arrays. Specifically, we propose the adoption of the Minimum Description Length (MDL) principle as a useful heuristic for ranking and selecting relevant features. Our approach has been successfully applied to the Acute Leukemia dataset and compared with different methods proposed by other researchers.
ISBN: 3-540-32529-8
Tipologia:4.1 Contributo in Atti di convegno

File in questo prodotto:
Non ci sono file associati a questo prodotto.
credits | accessibilità Università degli Studi di Cagliari
C.F.: 80019600925 - P.I.: 00443370929
note legali | privacy

Nascondi la toolbar