Prodotti della ricerca

 
Titolo: Engineering Knowledge Discovery in Network Intrusion Detection
Autori: 
Data di pubblicazione: 2004
Rivista: 
LECTURE NOTES IN COMPUTER SCIENCE  
Citazione: Engineering Knowledge Discovery in Network Intrusion Detection / BOSIN A; DESSÌ N; PES B. - 3177(2004), pp. 253-258. ((Intervento presentato al convegno Intelligent Data Engineering and Automated Learning - IDEAL 2004, 5th International Conference tenutosi a Exeter, UK nel August 25-27, 2004.
Abstract: The use of data mining techniques for intrusion detection (ID) is one of the ongoing issues in the field of computer security, but little attention has been placed in engineering ID activities. This paper presents a framework that models the ID process as a set of cooperative tasks each supporting a specialized activity. Specifically, the framework organises raw audit data into a set of relational tables and applies data mining algorithms to generate intrusion detection models. Specialized components of a commercial DBMS have been used to validate the proposed approach. Results show that the framework works well in capturing patterns of intrusion while the availability of an integrated software environment allows a high level of modularity in performing each task.
Handle: http://hdl.handle.net/11584/16593
ISBN: 3-540-22881-0
978-3-540-22881-3
Tipologia:2.1 Contributo in volume (Capitolo o Saggio)

File in questo prodotto:
Non ci sono file associati a questo prodotto.
credits unica.it | accessibilità Università degli Studi di Cagliari
C.F.: 80019600925 - P.I.: 00443370929
note legali | privacy

Nascondi la toolbar