Prodotti della ricerca

 
Titolo: Comparison Between an Artificial Neural Network and Logistic Regression in Predicting Long Term Kidney Transplantation Outcome
Autori: 
Data di pubblicazione: 2013
Abstract: Predicting clinical outcome following a specific treatment is a challenge that sees physicians and researchers alike sharing the dream of a crystal ball to read into the future. In Medicine, several tools have been developed for the prediction of outcomes following drug treatment and other medical interventions. The standard approach for a binary outcome is to use logistic regression (LR) [1,2] but over the past few years artificial neural networks (ANNs) have become an increasingly popular alternative to LR analysis for prognostic and diagnostic classification in clinical medicine [3]. The growing interest in ANNs has mainly been triggered by their ability to mimic the learning processes of the human brain. The network operates in a feed-forward mode from the input layer through the hidden layers to the output layer. Exactly what interactions are modeled in the hidden layers is still under study. Each layer within the network is made up of computing nodes with remarkable data processing abilities. Each node is connected to other nodes of a previous layer through adaptable inter-neuron connection strengths known as synaptic weights. ANNs are trained for specific applications through a learning process and knowledge is usually retained as a set of connection weights [4]. The backpropagation algorithm and its variants are learning algorithms that are widely used in neural networks. With backpropagation, the input data is repeatedly presented to the network. Each time, the output is compared to the desired output and an error is computed. The error is then fed back through the network and used to adjust the weights in such a way that with each iteration it gradually declines until the neural model produces the desired output
Handle: http://hdl.handle.net/11584/96892
ISBN: 978-953-51-0935-8
Tipologia:2.1 Contributo in volume (Capitolo o Saggio)

File in questo prodotto:
Non ci sono file associati a questo prodotto.
credits unica.it | accessibilità Università degli Studi di Cagliari
C.F.: 80019600925 - P.I.: 00443370929
note legali | privacy

Nascondi la toolbar