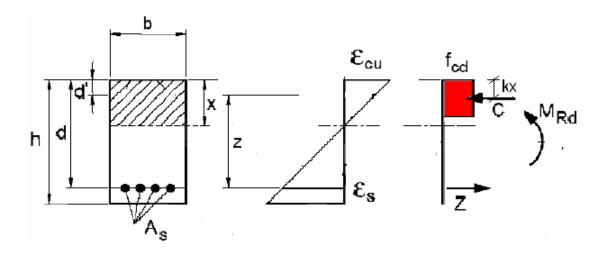


Università degli Studi di Cagliari

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 09/12/2010 ore 15:00 aula ALFA.


Cognome e Nome:

Matricola:

Quesito N° 1 (12 punti)

Progettare allo SLU la base b e l'armatura tesa A_s della sezione rettangolare (altezza h=200 mm) per Msd pari a 150 KNm, realizzata con calcestruzzo classe di resistenza C28/35 e acciaio B450C.

Risoluzione:

$$f_{cd} = \frac{0.85 \cdot 28}{1.5} = 15.87 MPa$$
 $f_{yd} = \frac{450}{1.15} = 391.3 MPa$

Lo SLU per flessione coincide con il raggiungimento della <u>massima capacità deformativa del calcestruzzo</u>, $\varepsilon c = 0,0035$.

E' necessario assegnare un valore limite alla deformazione dell'acciaio assumendo la deformazione ε_s pari a 0,01 (Armatura Equilibrata).

Si utilizza come diagramma costitutivo del calcestruzzo lo stress-block (β =0,8, k=0,4).

0.0035:x=0.01:(d-x)

Posizione dell'asse neutro

 $x = 0.259 \cdot d$

d=h-d'=200-40=160mm

x= 0,259·160=41 mm

Progetto della base b e dell'armatura tesa.

$$C = \beta \cdot x \cdot f_{cd} \cdot b$$

$$Z=A_s\cdot f_{vd}$$

$$M_{Rd} \!\! = C \! \cdot \! z \; con \; C \!\! = \beta \! \cdot \! x \! \cdot \! f_{cd} \! \cdot \! b$$

Si pone
$$M_{Sd} = M_{Rd}$$

$$z = d-k \cdot x = 160-(0,4\cdot41,4)=143 \text{ mm}$$

$$M_{Sd} = C \cdot z = \beta \cdot x \cdot f_{cd} \cdot b \cdot z = 0, 8 \cdot 41, 4 \cdot 15, 87 \cdot b \cdot 143, 4$$

da cui ricavo la base b :

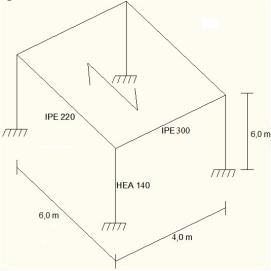
$$b = \frac{M_{Sd}}{\beta \cdot x \cdot f_{cd} \cdot z} = \frac{150.000.000}{0.8 \cdot 41.4 \cdot 15.87 \cdot 143.4} = 1.990 mm$$

La base della sezione risulta di 200 cm

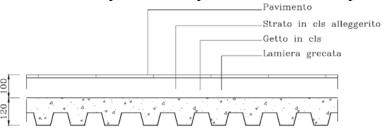
Dalla relazione C=Z si ottiene l'area dell'armatura tesa.

$$Z=A_{s} \cdot f_{vd} = A_{s} \cdot 391,3$$

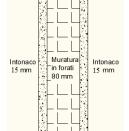
$$C=\beta \ x \ f_{cd} \ b=0.8 \cdot 0.259 \cdot d \cdot f_{cd} \cdot b=0.207 \cdot b \cdot d \cdot f_{cd}$$


$$A_s = 0,207b \ d \ f_{cd} \ / f_{yd} = 0,207 \cdot 160 \cdot 2.000 \cdot 15,87/391,3 = 2686 \ mm^2$$

Area effettiva 9 φ 20= 2827 mm²


Quesito 2 (16 punti)

Data la struttura in acciaio, riportata in figura, destinata ad uso commerciale (negozio), eseguire l'analisi dei carichi e verificare i pilastri; si considerino i pilastri incastrati al suolo e incernierati con le travi.


La struttura è realizzata con pilastri HEA 140, con travi principali IPE 300 e secondarie IPE 220 in acciaio S235. Trattandosi di profilato metallico commerciale di tipo HEA non è richiesta la classificazione del profilo del pilastro.

-Il solaio è realizzato in lamiera grecata tipo EGB 1200/D del peso di 0,21 kN/m², con soletta collaborante del peso di 2,3 kN/m², da uno strato di cls alleggerito per il passaggio degli impianti di 85 mm del peso di 12 kN/m³ e da un pavimento in piastrelle di 15 mm del peso di 20 kN/m³.

-Sul solaio sono presenti dei tramezzi così formati:

- -Intonaco civile spessore 15 mm e peso unitario 20 kN/m³
- -Muratura in forati spessore 80 mm e peso unitario 11 kN/m³

I tramezzi sono alti 2,60 m.

Dati del pilastro:

-altezza	h	133	mm
-larghezza	b	140	mm
-spessore delle ali	t_{f}	8,5	mm
-spessore dell'anima	$t_{\rm w}$	5,5	mm
-raggio di raccordo	r	12	mm
-area	A	3142	mm^2
-momento d'inerzia rispetto all'asse forte	I_{y-y}	1033	cm^4
-momento d'inerzia rispetto all'asse debole	I_{z-z}	389,3	cm^4
-Peso per unità di lunghezza	g_t	0,247	kN/m

Peso proprio della trave principale IPE 300: Peso proprio della trave secondaria IPE 220:			kN/m kN/m
Risoluzione:			
-Analisi dei carichi Carichi permanenti strutturali (G ₁): Peso proprio del pilastro Peso proprio della trave principale Peso proprio della trave secondaria		0,247 0,422 0,262	kN/m kN/m kN/m
Peso del solaio: lamiera grecata tipo EGB 1200/D soletta collaborante peso totale		0,21 2,3 2,51	kN/m ² kN/m ² kN/m ²
Carichi permanenti portati (G ₂): strato di cls alleggerito pavimento in piastrelle di 20 mm del peso di peso totale	$12 \text{ kN/m}^3 \cdot 0.085 \text{m} = 20 \text{ kN/m}^3 \cdot 0.015 \text{m} =$	1,02 0,3 1,32	kN/m ² kN/m ² kN/m ²
Peso proprio dei tramezzi per m ² : intonaco civile muratura in forati intonaco civile peso totale	$20 \text{ kN/m}^3 \cdot 0.015 \text{m} = 11 \text{ kN/m}^3 \cdot 0.08 \text{m} = 20 \text{ kN/m}^3 \cdot 0.015 \text{m} =$	0,3 0,88 0,3 1,48	kN/m ² kN/m ² kN/m ²

I carichi dovuti ai tramezzi possono essere ragguagliati ad un carico permanente portato uniformemente distribuito che nel caso di un peso per unità di lunghezza pari a $1,48 \text{ kN/m}^2 \cdot 2.60 \text{m} = 3,85 \text{ kN/m}$ è pari a $1,60 \text{ kN/m}^2$.

Carichi variabili (Qk1):

 $4,00 \text{ kN/m}^2$ ambienti ad uso negozio

-Carichi sul pilastro (poiché l'area d'influenza di un pilastro è pari a 3,0 m x 2,00 m, ogni pilastro porta i carichi di 6, m² di solaio):

Peso proprio del pilastro: Peso proprio della trave principale: Peso proprio della trave secondaria: Peso proprio del solaio: Carico permanente strutturale (G1)	$0,247 \text{ kN/m} \cdot 6,00\text{m} = 0,422 \text{ kN/m} \cdot 2,00\text{m} = 0,262 \text{ kN/m} \cdot 3,00\text{m} = 2,51 \text{ kN/m}^2 \cdot 6 \text{ m}^2 =$	0,844 0,786	kN kN kN kN
Carichi permanenti portati sul solaio: Peso proprio dei tramezzi: Carico permanente portato (G ₂)	$1,32 \text{ kN/m}^2 \cdot 6,00 \text{ m}^2 = 1,60 \text{ kN/m}^2 \cdot 6,00 \text{ m}^2 =$	7,92 9,60 17,52	kN kN kN
Carichi variabili (Qk1):	$4,00 \text{ kN/m}^2 \cdot 6,00 \text{ m}^2 =$	24,00	kN

-Combinazioni di carico

 $\gamma_{G1}.G_1 + \gamma_{G2}.G_2 + \gamma_{Q1}.Q_{K1}$

dove:

$$\gamma_{G1}$$
=1,3 G_1 =Carichi permanenti γ_{G2} =1,5 G_2 = Carichi permanenti non strutturali γ_{Q1} =1,5 Q_{K1} = Carichi variabili N_{Ed} = 1,3 · 18,17 + 1,5 · 17,52 + 1,5 · 24,00 = 85,9 kN

-Compressione

Resistenza di calcolo a compressione:

$$N_{c,Rd} = \frac{A \cdot f_{yk}}{\gamma_{M0}} = \frac{3142 \cdot 235}{1,05} \cong 703,2kN$$

Poiché si ha N_{Ed} =85,9 kN < $N_{c,Rd}$ = 703,2 kN la verifica risulta soddisfatta.

-Instabilità

Resistenza di calcolo all'instabilità:

$$\begin{split} N_{b,Rd} &= \frac{\chi \cdot A \cdot f_{yk}}{\gamma_{M1}} \\ \chi &= \frac{1}{\Phi + \sqrt{\Phi^2 + \overline{\lambda^2}}} \leq 1 \qquad \Phi = 0,5[1 + \alpha(\overline{\lambda} - 0,2) + \overline{\lambda}^2] \\ \overline{\lambda} &= \sqrt{\frac{A \cdot f_{yk}}{N_{cr}}} \end{split}$$

N_{cr}è il carico critico elastico dell'asta pari a:

$$N_{cr} = \frac{\pi^2 \cdot E \cdot I}{L_0^2}$$

dove $L_0=\beta \cdot L$ è la lunghezza di libera inflessione.

Per un'asta con un estremo incastrato ed uno incernierato $\beta=0.8$, per cui $L_{0,y}=L_{0,z}=0.8\cdot 6=4.8$ m.

Per le sezioni laminate quando si ha h/b<1,2 e t_f <100 mm, si considera la curva d'instabilità b per l'asse forte y-y e la curva d'instabilità c per l'asse debole z-z.

-asse forte y-y

Dalla curva d'instabilità b ricavo il fattore di imperfezione α=0,34.

$$N_{cr} = \frac{\pi^2 \cdot E \cdot I_{y-y}}{L_{0,y}^2} = \frac{\pi^2 \cdot 210000 \cdot 10330000}{4800^2} \cong 928,3kN$$

$$\overline{\lambda} = \sqrt{\frac{3142 \cdot 235}{928300}} = 0,892$$

$$\Phi = 0,5[1+0,34,0,892-0,2)+0,892^2] = 1,015$$

$$\chi = \frac{1}{1,015 + \sqrt{1,015^2 + 0,892^2}} = 0,423$$

e quindi la resistenza di calcolo a compressione rispetto all'asse forte y-y:

$$N_{b,Rd} = \frac{0.423 \cdot 3142 \cdot 235}{105} = 297.5 kN$$

-asse debole z-z

Dalla curva d'instabilità c ricavo il fattore di imperfezione α=0,49.

$$N_{cr} = \frac{\pi^2 \cdot E \cdot I_{z-z}}{L_{0,z}^2} = \frac{\pi^2 \cdot 210000 \cdot 3893000}{4800^2} = 349.8 \text{kN}$$

$$\overline{\lambda} = \sqrt{\frac{3142 \cdot 235}{349800}} = 1,453$$

$$\Phi = 0,5[1+0,4\% 1,453-0,2)+1,453^{2}] = 1,862$$

$$\chi = \frac{1}{1,862 + \sqrt{1,862^{2} + 1,453^{2}}} = 0,237$$

e quindi la resistenza di calcolo a compressione rispetto all'asse debole z-z:

$$N_{b,Rd} = \frac{0,237 \cdot 3142 \cdot 235}{1.05} = 166,5 kN$$

La resistenza di calcolo a compressione sarà la minore tra quelle calcolate rispetto ai due assi. Poiché si ha N_{Ed} =85,9 kN < $N_{b,Rd}$ = 166,5 kN la verifica risulta soddisfatta.

Quesito 3 (2 punti)

Su un getto di 95m^3 di miscela omogenea vengono effettuati 3 prelievi, siano R_1 , R_2 , R_3 le tre resistenze di prelievo, con: $\mathbf{R1} \le \mathbf{R2} \le \mathbf{R3}$

 $R_1 = 34,5 \text{ N/mm}^2$

 $R_2 = 42,6 \text{ N/mm}^2$

 $R_3 = 59 \text{ N/mm}^2$

Calcolare la resistenza caratteristica minima del calcestruzzo.

Risoluzione:

$$Rm \ge Rck + 3.5 (N/mm^2)$$

$$R1 \ge Rck - 3.5 (N/mm^2)$$

In cui:
$$Rm = \frac{R1 + R2 + R3}{3}$$

 $Rm = (34,5+42,6+59)/3 = 45,4 \text{ N/mm}^2$

$$\begin{array}{ll} Rm - 3.5 \geq Rck \; (N/mm^2) & 45.4 - 3.5 = 41.9 \geq Rck \; (N/mm^2) \\ R1 + 3.5 \geq Rck \; (N/mm^2) & 34.5 + 3.5 = 38 \geq Rck \; (N/mm^2) \end{array}$$

La Rck minima risulta pari a 38 N/mm².