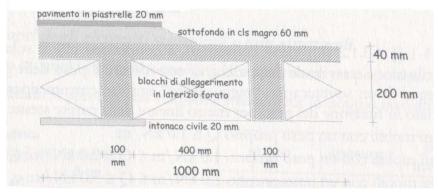
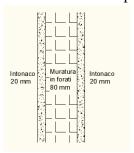

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 13/01/2011 ore 15:00 aula CD.

Cognome e Nome:	
Matricola:	


Quesito N° 1 (20 punti)

Data la struttura in calcestruzzo armato, riportata in figura, destinata ad uso sala convegni, eseguire l'analisi dei carichi, progettare e verificare per l'azione flettente la trave principale allo SLU (b=300 mm e h=700 mm, peso specifico cls 25 kN/m^3) e progettare le armature dei pilastri (altezza 3 m) allo SLU aventi sezione b=400 mm e h=300 mm.


La struttura è realizzata in calcestruzzo con classe di resistenza C28/35 e acciaio B450C.

-Il solaio, di luce 6,0 m è realizzato in calcestruzzo armato gettato in opera (altezza 200+40 mm) del peso di 3,76 kN/m 2 , con sottofondo in cls magro di 60 mm del peso di 20 kN/m 3 , pavimento in piastrelle di 20 mm del peso di 20 kN/m 3 e da un intonaco all'intradosso di 20 mm del peso di 20 kN/m 3 .

-Sul solaio sono presenti dei tramezzi così formati:

- -Intonaco civile spessore 20 mm e peso unitario 20 kN/m³
- -Muratura in forati spessore 80 mm e peso unitario 11 kN/m³

I tramezzi sono alti 2,90 m.

Risoluzione:

1. Analisi dei carichi solaio

Carichi permanenti strutturali (G1): Peso del solaio (gettato in opera, altezza 200+40mm):		3,76	kN/m ²
Carichi permanenti portati (G ₂): strato di cls magro pavimento in piastrelle di 20 mm del peso di intonaco all'intradosso 20 mm del peso di peso totale	$20 \text{ kN/m}^3 \cdot 0.06\text{m} = 20 \text{ kN/m}^3 \cdot 0.02\text{m} = 20 \text{ kN/m}^3 \cdot 0.02\text{m} =$	1,20 0,4 0,4 2,00	kN/m ² kN/m ² kN/m ²
Peso proprio dei tramezzi per m ² : intonaco civile muratura in forati intonaco civile peso totale	$20 \text{ kN/m}^3 \cdot 0.02\text{m} = 11 \text{ kN/m}^3 \cdot 0.08\text{m} = 20 \text{ kN/m}^3 \cdot 0.02\text{m} =$	0,4 0,88 0,4 1,68	kN/m ² kN/m ² kN/m ²

I carichi dovuti ai tramezzi possono essere ragguagliati ad un carico permanente portato uniformemente distribuito che, nel caso di un peso per unità di lunghezza pari a 1,68 kN/m 2 ·2,90 m = 4,87 kN/m, è pari a **2,00 kN/m^2**.

Carichi variabili (Qk1):

ambienti ad uso sala convegni (ambienti suscettibili di affollamento)

 $4.00 kN/m^2$

2. Carichi sulla trave (poiché la luce del solaio è pari a 6 m, ogni trave porta i carichi di metà solaio)

Peso proprio della trave Peso proprio del solaio: Carico permanente strutturale totale (G1)	$0.3 \text{m} \cdot 0.7 \text{m} \cdot 25 \text{ kN/m}^3 =$ $3.76 \text{ kN/m}^2 \cdot 3 \text{m} =$	11,28	kN/m kN/m kN/m
Carichi permanenti portati sul solaio:	$2,00 \text{ kN/m}^2 \cdot 3\text{m} = 2,00 \text{ kN/m}^2 \cdot 3\text{m} =$	6,00	kN/m
Peso proprio dei tramezzi:		6,00	kN/m

Carico permanente portato totale (G2)

12,00 kN/m

Carichi variabili (Qk1):

 $4,00 \text{ kN/m}^2 \cdot 3\text{m} =$

12,0 kN/m

-Combinazioni di carico

-SLU

 $\gamma_{G1}.G_1 + \gamma_{G2}.G_2 + \gamma_{Q1}.Q_{K1}$

dove:

 $\gamma_{G1}=1,3$

G₁=Carichi permanenti

 $\gamma_{G2}=1,5$

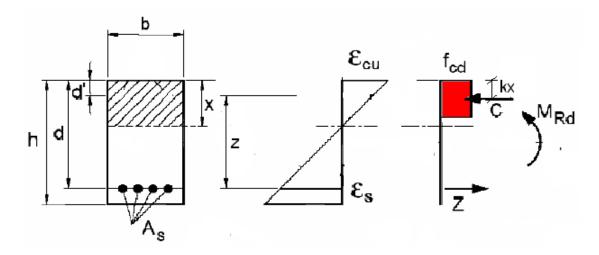
G₂= Carichi permanenti non strutturali

 $\gamma_{01} = 1.5$

Q_{K1}= Carichi variabili

 F_{Ed} =1,3·16,53+1,5·12,00+1,5·12,00=57,49 kN/m

-Calcolo delle sollecitazioni


Massimo taglio sollecitante:

$$V_{sd} = \frac{F_{Ed} \cdot 7}{2} = 201,21kN$$

Massimo momento sollecitante:

$$M_{sd} = \frac{F_{Ed} \cdot 7^2}{8} = 352,13 \text{kNm}$$

Progettazione dell'armatura della trave per l'azione flettente.

$$f_{cd} = \frac{0.85 \cdot 28}{1.5} = 15.87 MPa$$

$$f_{yd} = \frac{450}{1,15} = 391,3MPa$$

Lo SLU per flessione coincide con il raggiungimento della <u>massima capacità deformativa del calcestruzzo</u>, $\varepsilon c = 0,0035$.

E' necessario assegnare un valore limite alla deformazione dell'acciaio assumendo la deformazione ϵ_s pari a 0,01 (Armatura Equilibrata).

Si utilizza come diagramma costitutivo del calcestruzzo lo stress-block (β=0,8, k=0,4).

0.0035:x=0.01:(d-x)

Posizione dell'asse neutro

 $x = 0.259 \cdot d$

$$d = h-d'=700-40 = 660 \text{ mm}$$

x=171 mm

Progetto dell'armatura tesa.

$$Z=A_s \cdot f_{vd}$$

$$M_{Rd} = Z \cdot z \text{ con } Z = A_s \cdot f_{vd}$$

Si pone $M_{Sd} = M_{Rd} = 352.130.000N \text{ mm}$

$$Z = d-k \cdot x = 660 - (0.4 \cdot 171) = 592 \text{ mm}$$

$$M_{Sd} = Z \cdot z = A_s \cdot f_{vd} \cdot (d - k \cdot x) = A_s \cdot 391, 3.592 \text{ mm}$$

da cui ricavo l'area di armatura tesa minima:

$$A_s = 1.520 \text{ mm}^2$$

scegliamo un' Area effettiva di 5φ20= 1571 mm²

Verifica della trave a flessione SLU.

Calcolo asse neutro:

Lo SLU per flessione coincide con il raggiungimento della massima capacità deformativa del calcestruzzo,

$$\varepsilon_{\rm c} = 0.0035$$
.

Dall'equilibrio alla traslazione C=Z otteniamo la posizione dell'asse neutro, ipotizzando che l'acciaio lavori oltre lo snervamento.

Si utilizza come diagramma costitutivo del calcestruzzo lo stress-block (β=0,8, k=0,4).

$$C = \beta \cdot x \cdot f_{cd} \cdot b = 0.8 \cdot x \cdot 15.87 \cdot 300$$

$$Z = A_s \cdot f_{vd} = 1571 \cdot 391,3 = 614.732,3 \text{ N}$$

$$x = 161 \text{ mm}$$

Verifico che l'ipotesi sul comportamento dell'acciaio sia valida.

$$0.0035:161 = \varepsilon_s:(660 - 161)$$

$$\varepsilon_s > 0.01 \text{ OK}$$

Verifica

$$M_{Rd} \ge M_{Sd}$$

$$M_{Rd} = Z \cdot z = 614.732, 3 \cdot (660 - (0,4 \cdot 161)) = 366,13 \text{ KNm} \ge M_{Sd} = 352,13 \text{ KNm}$$

Progettazione armatura del pilastro.

Azione sollecitante SLU sezione estremità inferiore.

$$N_{sd}=V_{sd}+1.3 \text{ Pp}$$

Peso proprio del pilastro (altezza 3m)

$$0.3 \text{m} \cdot 0.4 \text{m} \cdot 3 \text{m} \cdot 25 \text{kN/m}^3 = 9.0 \text{ kN}$$

$$N_{sd}=V_{sd}+1,3 \text{ Pp}=201,21+9,0\cdot1,3=212,91 \text{ KN}$$

Nel caso di elementi sottoposti a prevalente sforzo normale, le barre parallele all'asse devono avere diametro maggiore od uguale a 12mm e non potranno avere interassi maggiori di 300mm.

 $\varphi \ge 12$ mm con φ diametro delle barre longitudinali;

i $_{\text{barre-long}} \leq 300 \text{mm}$ con $i_{\text{barre-long}}$ interasse barre longitudinali, nel caso in esame saranno quindi necessarie 3 barre sui lati lunghi della sezione;

Inoltre la loro area non deve essere inferiore a:

$$As, \min \ge \frac{0.10N_{sd}}{fvd}$$

E comunque non inferiore a $0.003A_c$ (punto 4.1.44). Scegliendo di armare con $6\phi12$, A_s risulta pari a $679~\text{mm}^2$ quindi soddisfa entrambe le prescrizioni, infatti:

$$As$$
, min $\geq \frac{0.10 \cdot 212.910}{391.3} = 54 mm^2$

$$Ac = 300 \cdot 400 = 120.000 \text{ mm}^2$$

$$As \ge 0.003 \cdot A_c = 0.003 \cdot 120.000 = 360 \, mm^2$$

Verifica:

Con riferimento alla verifica di resistenza dei pilastri in c.a. soggetti a sola compressione assiale, la prescrizione circa l'eccentricità minima dell'azione assiale da tenere in conto può essere implicitamente soddisfatta valutando N_{Rd} con la formula:

$$N_{Rd} = 0.8 A_c f_{cd} + A_{s,tot} f_{yd}$$
 (C4.1.4)

Quesito N° 2 (10 punti)

Verificare allo SLU la mensola realizzata da un profilo IPE 220 in acciaio S275 di luce 2m. I carichi presenti sono:

-permanenti	8,00 kN/m
-permanenti non strutturali	11,00 kN/m
-variabili	5.00 kN/m

La trave sostiene una soletta che la vincola totalmente nei confronti dell'instabilità laterale. Trattandosi di profilato metallico commerciale di tipo IPE non è richiesta la classificazione del profilo.

Dati del profilo:

-altezza	h	220	mm
-larghezza	b	110	mm
-spessore delle ali	t_{f}	9,2	mm
-spessore dell'anima	$t_{ m w}$	5,9	mm
-raggio di raccordo	r	15	mm
-area	A	3337	mm^2
-momento d'inerzia rispetto all'asse forte	I_x	2772	cm^4
-modulo di resistenza plastico rispetto all'asse forte	$\mathbf{W}_{\mathrm{pl,x}}$	285,4	cm^3

Risoluzione

-Combinazioni di carico

-SLU

 $\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_{O1} \cdot Q_{K1}$

dove:

 $\gamma_{G1}=1,3$ $G_1=Carichi permanenti$

 γ_{G2} =1,5 G_2 = Carichi permanenti non strutturali

 $\gamma_{Q1}=1,5$ $Q_{K1}=$ Carichi variabili

 $F_{Ed}=1,3\cdot8,00+1,5\cdot11,00+1,5\cdot5,00=34,4 \text{ kN/m}$

-Calcolo delle sollecitazioni

Massimo taglio sollecitante:

$$V_{sd} = 34.4 \cdot 2 = 68.8 kN$$

Massimo momento sollecitante:

$$M_{sd} = \frac{34.4 \cdot 2^2}{2} = 68.8 kNm$$

-Calcolo della resistenza a taglio

 $A_V = A - 2b \cdot t_f + (t_w + 2 \cdot r)t_f = 1.643,3 \text{ mm}^2$

$$V_{PI,Rd} = A_v \frac{f_v / \sqrt{3}}{\gamma_{M0}} = 1.643.3 \cdot \frac{275}{1.05 \cdot \sqrt{3}} = 248.485N \approx 248kN$$

Poiché si ha $V_{sd} = 68.8 \text{ kN} < V_{Pl,Rd} = 248 \text{ kN}$ la verifica risulta soddisfatta.

Poiché il taglio sollecitante V_{sd} non risulta mai superiore al 50% del taglio resistente plastico $V_{Pl,Rd}$ si può trascurare l'interazione tra il taglio e il momento flettente nella successiva verifica.

-Calcolo della resistenza al momento flettente

Il momento resistente di progetto è (essendo la sezione di classe1):

$$M_{c,Rd} = W_{pl} \frac{f_y}{\gamma_{M0}} = 285.400 \cdot \frac{275}{1.05} = 74.747.619 N \cdot mm \approx 74,75 kNm$$

Poiché si ha $M_{sd} = 68,8 \, kNm < M_{c,Rd} = 74,75 \, kNm$ la verifica risulta soddisfatta.