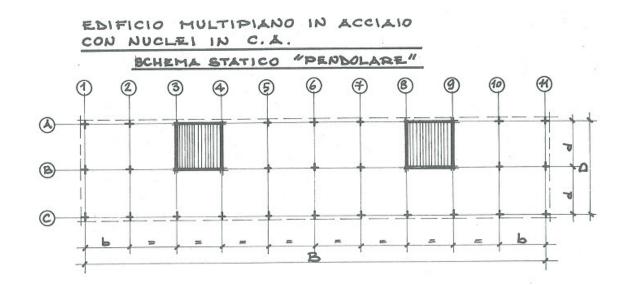
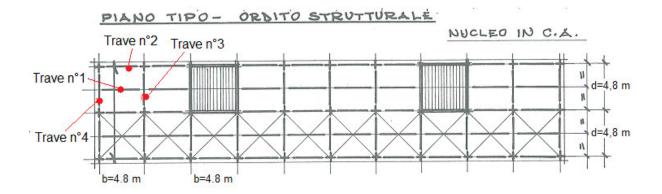


Esercitazione: Edificio Multipiano in Acciaio

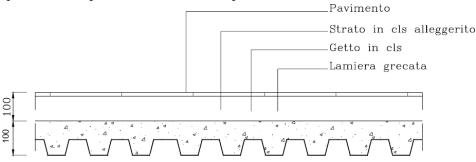

Sommario


Intro	duzione	2
1.	Analisi dei carichi	3
	Verifica delle travi	
	Trave N° 1.	
	Trave N° 2.	
	Trave N° 3.	
	Trave N° 4.	
	Verifica dei pilastri	
	Pilastrata N° 1	
D. I.	PHASUALA IN T	1/

Introduzione

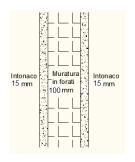
Normativa di riferimento:

-Norme tecniche per le costruzioni 2008.



1. Analisi dei carichi

Pesi dei materiali dalla Tabella 3.1.I delle Norme Tecniche


- -Il solaio è realizzato in:
- -lamiera grecata con soletta collaborante
- -strato di cls alleggerito per il passaggio degli impianti di 80 mm del peso di 14 kN/m³
- -pavimento in piastrelle di 20 mm del peso di 20 kN/m³.

Carichi permanenti non strutturali

strato di cls alleggerito	$14 \text{ kN/m}^3 \cdot 0.08 \text{m} =$	1,12	
pavimento in piastrelle di 20 mm del peso di	$20 \text{ kN/m}^3 \cdot 0.02 \text{m} =$	0,4	kN/m ²
peso totale		1,52	kN/m ²

-Sul solaio sono presenti dei tramezzi così formati:

- -Intonaco civile spessore 15 mm e peso unitario

 20 kN/m^3 -Muratura in forati spessore 100 mm e peso a m² di parete 0.9 kN/m^2

I tramezzi sono alti 3,30 m.

peso totale		1,5	kN/m ²
intonaco	$20 \text{ kN/m}^3 \cdot 0.015 \text{m} =$	0,3	
Muratura in forati		-)-	kN/m ²
intonaco	$20 \text{ kN/m}^3 \cdot 0.015 \text{m} =$	0,3	kN/m ²

I carichi dovuti ai tramezzi possono essere ragguagliati ad un carico permanente portato uniformemente distribuito che nel caso di un peso per unità di lunghezza pari a 1,5 kN/m²·3.30m=4,95 kN/m è pari a 2,00 kN/m^2 . (par.3.1.3.1)

Carichi variabili

- Carichi variabili pari a 2 kN/m² per edifici ad uso ufficio non aperto al pubblico (par.3.1.4)

I carichi con i quali verrà dimensionata la lamiera grecata sono i carichi permanenti non strutturali ed i carichi variabili.

3.52

 kN/m^2

Carichi permanenti non strutturali

peso totale		5,52	kN/m ²
Carichi variabile	=	2,00	kN/m^2

-Scelta del tipo di solaio

Considerando un carico di 5,52 kN/m2 ed una luce di 2,4 m si opta per un solaio in lamiera grecata con getto di calcestruzzo collaborante con le seguenti caratteristiche:

- -lamiera tipo HI-BOND Type A55/P 600
- -calcestruzzo della classe Rck 250
- -Altezza del solaio 10 cm
- -spessore della lamiera 0,70 mm
- -Peso proprio del solaio: 1,9 kN/m²

Riepilogo analisi dei carichi

-Peso proprio del solaio:	1,9	kN/m^2
- Carichi permanenti non strutturali	3,52	kN/m^2
-Carichi variabile	2,00	kN/m^2

-Caratteristiche dell'acciaio (par.11.3.4.1)

Modulo elastico	E=210000	N/mm ²
Modulo di elasticità trasversale	G=80769	N/mm ²
Densità	ρ=7850	kg/m ³
Tensione di snervamento	$f_{vk} = 275$	N/mm ²
Tensione di rottura	$f_{tk} = 430$	N/mm ²

2. Verifica delle travi

2.1.Trave N° 1

-Predimensionamento della trave

Considerando una luce di 4,8 m ed un rapporto h/l, altezza trave/luce, pari a 1/16-1/20 si assume una trave di h=240 mm.

-Dati del profilo:

-altezza	h	240	mm
-larghezza	b	120	mm
-spessore delle ali	$\mathrm{t_{f}}$	9,8	mm
-spessore dell'anima	$t_{ m w}$	6,2	mm
-raggio di raccordo	r	15	mm
-area	A	3912	mm^2
-momento d'inerzia rispetto all'asse forte	I_x	3892	cm ⁴
-modulo di resistenza plastico rispetto all'asse forte	$\mathbf{W}_{\mathrm{pl,x}}$	366,6	cm ³
-Peso per unità di lunghezza	g_{t}	0,31	kN/m

-Classificazione del profilo per le azioni flettenti (par.4.2.3.1)

acciaio S275
$$\rightarrow \varepsilon = \sqrt{\frac{235}{f_y}} = 0,924 \text{ con } f_y=275\text{N/mm}^2 \text{ tensione di snervamento dell'acciaio.}$$

Poiché è rispettato il seguente rapporto:

$$\frac{d}{t_w \cdot \varepsilon} = 33,22 < 72 \rightarrow l$$
'anima appartiene alla classe 1,

dove d=h-2·(t_f+r) è l'altezza dell'anima.

Poiché è rispettato il seguente rapporto:

$$\frac{c}{t_f \cdot \varepsilon}$$
 = 4,62 < 9 \rightarrow 1'ala appartiene alla classe 1,

dove $c=(b-2\cdot r-t_w)/2$.

La sezione è classificata in base alla classe della componente più alta, nel nostro caso la sezione appartiene alla classe 1.

-Carichi sulla trave

Peso proprio della trave:		0,31	kN/m
Peso proprio del solaio:	$1, 9 \text{ kN/m}^2 \cdot 2,4 \text{m} =$	4,56	kN/m
Carichi permanenti portati:	$3,52 \text{ kN/m}^2 \cdot 2,4 \text{m} =$	8,45	kN/m
Carichi variabili:	$2,00 \text{ kN/m}^2 \cdot 2,4 \text{m} =$	4,8	kN/m

-Combinazione di carico SLU (par.2.6.1)

$$F_{sd} = \gamma G1.G_1 + \gamma_{G2}.G_2 + \gamma_{Q1}.Q_{K1}$$
 dove:

 $\gamma_{G_1}=1,3$ G₁=Carichi permanenti

 γ_{G2} =1,5 G₂= Carichi permanenti non strutturali

 $\gamma_{Q1}=1,5$ $Q_{K1}=$ Carichi variabili

Carico a metro lineare:

$$F_{sd} = 1.3 \cdot (0.31 + 4.56) + 1.5 \cdot 8.45 + 1.5 \cdot 4.8 = 26.21 \text{kNm}$$

-Calcolo delle sollecitazioni

Massimo taglio sollecitante:

$$V_{sd} = \frac{F_{sd} \cdot L}{2} = \frac{26,21 \cdot 4,8}{2} = 62,9kN$$

Massimo momento sollecitante:

$$M_{sd} = \frac{F_{sd} \cdot L^2}{8} = \frac{26,21 \cdot 4,8^2}{8} = 75,5kNm$$

-Calcolo della resistenza a taglio (par.4.2.2.1.2)

 $A_V = A - 2b \cdot t_f + (t_w + 2 \cdot r)t_f = 1914,7 \text{ mm}^2$

$$V_{Pl,Rd} = A_v \frac{f_{yk} / \sqrt{3}}{\gamma_{M0}} = 1914,7 \cdot \frac{275}{1.05 \cdot \sqrt{3}} = 289866N \approx 289,8kN$$

Poiché si ha V_{sd}=62,9kN<V_{Pl.Rd}=289,8kN la verifica risulta soddisfatta.

Poiché il taglio sollecitante V_{sd} non risulta mai superiore al 50% del taglio resistente plastico $V_{Pl,Rd}$ si può trascurare l'interazione tra il taglio e il momento flettente nella successiva verifica.

-Calcolo della resistenza al momento flettente

Il momento resistente di progetto è (essendo la sezione di classe1):

$$M_{c,Rd} = W_{pl} \frac{f_{yk}}{\gamma_{M0}} = 366600 \cdot \frac{275}{1.05} = 96014285N \approx 96,0kNm$$

Poiché si ha M_{sd}=75,5kNm<M_{c,Rd}=96,0kNm la verifica risulta soddisfatta.

-Verifica agli stati limite di esercizio (deformazione) (par.4.2.4.2.1)

Spostamenti e deformazioni che possano compromettere l'efficienza e l'aspetto di elementi non strutturali, o che possano limitare l'uso della costruzione, la sua efficienza e il suo aspetto.

$$\delta_{tot} = \delta_1 + \delta_2$$

 δ_1 Spostamento elastico dovuto ai carichi permanenti

 δ_2 Spostamento elastico dovuto ai carichi variabili

 δ_c monta iniziale della trave

 δ_{max} spostamento finale depurato della monta iniziale = δ_{tot} - δ_c

Abbassamento totale:

$$\delta_{\text{max}} = \frac{5}{384} \cdot \frac{[0,31 + (4,56 + 8,45) + 4,8)] \cdot 4800^4}{210000 \cdot (3892 \cdot 10^4)} = 15,3 mm \le 19,2 mm (= \frac{L}{250})$$

Abbassamento dovuto ai carichi variabili:

$$\delta_2 = \frac{5}{384} \cdot \frac{4,8 \cdot 4800^4}{210000 \cdot (3892 \cdot 10^4)} = 4,1 mm \le 16 mm (= \frac{L}{300})$$

2.2.Trave N° 2

-Dati del profilo:

h	240	mm
b	120	mm
t_{f}	9,8	mm
t_{w}	6,2	mm
r	15	mm
A	3912	mm^2
I_x	3892	cm ⁴
$\mathrm{W}_{\mathrm{pl,x}}$	366,6	cm^3
g_t	0,31	kN/m
	$egin{array}{c} b \ t_{\mathrm{f}} \ t_{\mathrm{w}} \ r \ A \ I_{\mathrm{x}} \ W_{\mathrm{pl,x}} \end{array}$	$\begin{array}{cccc} b & 120 \\ t_f & 9,8 \\ t_w & 6,2 \\ r & 15 \\ A & 3912 \\ I_x & 3892 \\ W_{pl,x} & 366,6 \\ \end{array}$

-Carichi sulla trave

Peso proprio della trave:		0,31	kN/m
Peso proprio del solaio:	$1, 9 \text{ kN/m}^2 \cdot 1, 2m =$	2,28	kN/m
Carichi permanenti portati:	$3,52 \text{ kN/m}^2 \cdot 1,2 \text{m} =$	4,23	kN/m
Peso dei pannelli prefabbricati esterni:		8,0	kN/m
Carichi variabili:	$2,00 \text{ kN/m}^2 \cdot 1,2 \text{m} =$	2,4	kN/m

-Combinazione di carico SLU (par.2.6.1)

 $F_{sd} = \gamma G1.G_1 + \gamma_{G2}.G_2 + \gamma_{Q1}.Q_{K1}$

dove:

 γ_{G1} =1,3 G_1 =Carichi permanenti

 γ_{G2} =1,5 G₂= Carichi permanenti non strutturali

 γ_{O1} =1,5 Q_{K1} = Carichi variabili

Carico a metro lineare:

$$F_{sd} = 1.3 \cdot (0.31 + 2.28) + 1.5 \cdot (4.23 + 8.0) + 1.5 \cdot 2.4 = 25.31 \text{kNm}$$

-Classificazione del profilo per le azioni flettenti (par.4.2.3.1)

acciaio S275 $\rightarrow \varepsilon = \sqrt{\frac{235}{f_y}} = 0.924 \text{ con } f_y=275\text{N/mm}^2 \text{ tensione di snervamento dell'acciaio.}$

Poiché è rispettato il seguente rapporto:

$$\frac{d}{t_{\text{tot}} \cdot \varepsilon} = 33,22 < 72 \rightarrow \text{l'anima appartiene alla classe 1},$$

dove d=h- $2\cdot(t_f+r)$ è l'altezza dell'anima.

Poiché è rispettato il seguente rapporto:

$$\frac{c}{t_f \cdot \varepsilon}$$
 = 4,62 < 9 \rightarrow 1'ala appartiene alla classe 1,

dove $c=(b-2\cdot r-t_w)/2$.

La sezione è classificata in base alla classe della componente più alta, nel nostro caso la sezione appartiene alla classe 1.

-Calcolo delle sollecitazioni

Massimo taglio sollecitante:

$$V_{sd} = \frac{F_{sd} \cdot L}{2} = \frac{25,31 \cdot 4,8}{2} = 60,75kN$$

Massimo momento sollecitante:

$$M_{sd} = \frac{F_{sd} \cdot L^2}{8} = \frac{25,31 \cdot 4,8^2}{8} = 72,9kNm$$

-Calcolo della resistenza a taglio (par.4.2.2.1.2)

 $A_V = A - 2b \cdot t_f + (t_w + 2 \cdot r)t_f = 1914,7 \text{ mm}^2$

$$V_{Pl,Rd} = A_v \frac{f_{yk} / \sqrt{3}}{\gamma_{M0}} = 1914,7 \cdot \frac{275}{1.05 \cdot \sqrt{3}} = 289866N \approx 289,8kN$$

Poiché si ha V_{sd}=60,75kN<V_{Pl,Rd}=289,8kN la verifica risulta soddisfatta.

Poiché il taglio sollecitante V_{sd} non risulta mai superiore al 50% del taglio resistente plastico $V_{Pl,Rd}$ si può trascurare l'interazione tra il taglio e il momento flettente nella successiva verifica.

-Calcolo della resistenza al momento flettente

Il momento resistente di progetto è (essendo la sezione di classe1):

$$M_{c,Rd} = W_{pl} \frac{f_{yk}}{\gamma_{M0}} = 366600 \cdot \frac{275}{1.05} = 96014285N \approx 96,0kNm$$

Poiché si ha M_{sd}=72,9kNm<M_{c.Rd}=96,0kNm la verifica risulta soddisfatta.

-Verifica agli stati limite di esercizio (deformazione) (par.4.2.4.2.1)

$$\delta_{tot} = \delta_1 + \delta_2$$

 δ_1 Spostamento elastico dovuto ai carichi permanenti

 δ_2 Spostamento elastico dovuto ai carichi variabili

 δ_c monta iniziale della trave

 δ_{max} spostamento finale depurato della monta iniziale = δ_{tot} - δ_c

Abbassamento totale:

$$\delta_{\max} = \frac{5}{384} \cdot \frac{[0,31 + (2,28 + 4,23 + 8) + 2,4)] \cdot 4800^4}{210000 \cdot (3892 \cdot 10^4)} = 14,6mm \le 19,2mm (= \frac{L}{250})$$

Abbassamento dovuto ai carichi variabili:

$$\delta_2 = \frac{5}{384} \cdot \frac{2,4 \cdot 4800^4}{210000 \cdot (3892 \cdot 10^4)} = 2,03 \text{mm} \le 16 \text{mm} (= \frac{L}{300})$$

2.3. Trave N° 3

Poiché devo verificare la trave n°3 devo valutare il carico concentrato trasferito su di essa dalle due travi su di essa vincolate.

Il carico sulla trave n°3 sarà pari alla metà del carico delle due travi che sono state definite come trave n°1.

Avremo una F_{sd}=63+63=126,0kN

-Dati del profilo:

-altezza	h	330	mm
-larghezza	b	160	mm
-spessore delle ali	\mathbf{t}_{f}	11,5	mm
-spessore dell'anima	$t_{\rm w}$	7,5	mm
-raggio di raccordo	r	18	mm
-area	A	6261	mm^2
-momento d'inerzia rispetto all'asse forte	I_x	11770	cm ⁴
-momento d'inerzia rispetto all'asse debole	I_y	778,10	cm ⁴
-momento d'inerzia torsionale	I_T	28,15	cm ⁴
-costante d'ingobbamento== $\frac{I_y \cdot (h - t_f)^2}{4}$	I_{ω}	199800 cm ⁶	
-modulo di resistenza plastico rispetto all'asse forte	$W_{pl,x}$	804,3	cm^3
-Peso per unità di lunghezza	g_t	0,49	kN/m

-Classificazione del profilo per le azioni flettenti (par.4.2.3.1)

acciaio S275
$$\rightarrow \varepsilon = \sqrt{\frac{235}{f_y}} = 0.924 \text{ con } f_y = 275 \text{N/mm}^2 \text{ tensione di snervamento dell'acciaio.}$$

Poiché è rispettato il seguente rapporto:

$$\frac{d}{t_w \cdot \varepsilon} = 39,1 < 72 \rightarrow 1$$
'anima appartiene alla classe 1,

dove d=h-2· (t_f+r) è l'altezza dell'anima.

Poiché è rispettato il seguente rapporto:

$$\frac{c}{t_f \cdot \varepsilon}$$
 = 5,48 < 9 \rightarrow 1'ala appartiene alla classe 1,

dove $c=(b-2\cdot r-t_w)/2$.

La sezione è classificata in base alla classe della componente più alta, nel nostro caso la sezione appartiene alla classe 1.

-Calcolo delle sollecitazioni

Massimo taglio sollecitante = taglio dovuto al carico concentrato + taglio dovuto al peso proprio della trave.

$$V_{sd} = \frac{F_{sd}}{2} + \frac{1.3 \cdot 0.49 \cdot 4.8}{2} = 64.5kN$$

Massimo momento sollecitante = momento dovuto al carico concentrato + momento dovuto al peso proprio della trave

$$M_{sd} = \frac{F_{sd} \cdot 4.8}{4} + \frac{1.3 \cdot 0.49 \cdot 4.8^2}{8} = 153.0 kNm$$

-Calcolo della resistenza a taglio

 $A_V = A - 2b \cdot t_f + (t_w + 2 \cdot r)t_f = 3081,2 \text{ mm}^2$

$$V_{Pl,Rd} = A_v \frac{f_{yk} / \sqrt{3}}{\gamma_{M0}} = 3081, 2 \cdot \frac{275}{1.05 \cdot \sqrt{3}} = 465918N \approx 466kN$$

Poiché si ha V_{sd} =65,0 kN< $V_{Pl,Rd}$ =466kN la verifica risulta soddisfatta.

Poiché il taglio sollecitante V_{sd} non risulta mai superiore al 50% del taglio resistente plastico $V_{Pl,Rd}$ si può trascurare l'interazione tra il taglio e il momento flettente nella successiva verifica.

-Calcolo della resistenza al momento flettente

Il momento resistente di progetto è (essendo la sezione di classe1):

$$M_{c,Rd} = W_{pl} \frac{f_{yk}}{\gamma_{M0}} = 1019000 \cdot \frac{275}{1.05} = 210650000N \approx 210,7kNm$$

Poiché si ha M_{sd}=153,0kNm<M_{c.Rd}=210,7kNm la verifica risulta soddisfatta.

-Verifica alla stabilità delle aste inflesse (svergolamento)

Approccio Norme tecniche 2008 par 4.2.4.1.3.2

Il momento resistente di progetto per i fenomeni di instabilità di una trave lateralmente non vincolata può essere assunto pari a:

$$M_{b,Rd} = \chi_{LT} \cdot W_{pl} \frac{f_{yk}}{\gamma_{M0}}$$

Il fattore χ_{LT} è il fattore di riduzione per l'instabilità flesso-torsionale, dipendente dal tipo di profilo impiegato; può essere determinato per profili laminati o composti saldati dalla formula:

$$\chi_{LT} = \frac{1}{f} \cdot \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \beta \cdot \overline{\lambda_{LT}^2}}} \le \left\{ \frac{1,0}{\frac{1}{\overline{\lambda_{LT}^2}}} \cdot \frac{1}{f} \right\}$$

$$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} \cdot (\overline{\lambda_{LT}^2} - \overline{\lambda_{LT,0}^2}) + \beta \cdot \overline{\lambda_{LT}^2} \right]$$

Il coefficient α_{LT} è un fattore di impefezione funzione del tipo di sezione.

Il fattore f considera la reale distribuzione del momento flettente tra i ritegni torsionali dell'elemento inflesso ed è definito dalla formula:

$$f = 1 - 0.5 \cdot (1 - k_c) \left[1 - 2 \cdot (\overline{\lambda_{LT}^2} - 0.8^2) \right]$$

I coefficiente k_c è tabellato in funzione del diagramma del momento flettente.

Il coefficiente di snellezza adimensionale λ_{LT} è dato dalla formula:

$$\overline{\lambda_{LT}} = \sqrt{\frac{W_{pl} \cdot f_{yk}}{M_{cr}}}$$

 M_{cr} è il momento critico elastico di instabilità torsionale considerando la sezione lorda del profilo e i ritegni torsionali nell'ipotesi di diagramma di momento flettente uniforme:

$$M_{cr} = \psi \cdot \frac{\pi}{L_{cr}} \cdot \sqrt{EI_{y} \cdot GI_{T}} \cdot \sqrt{1 + \left(\frac{\pi}{L_{cr}}\right)^{2} \cdot \frac{EI_{\omega}}{GI_{T}}}$$

$$\psi = 1,75 - 1,05 \cdot \frac{M_{B}}{M_{A}} + 0,3 \cdot \left(\frac{M_{B}}{M_{A}}\right)^{2} con|M_{B}| < |M_{A}|$$

Approccio EC3

Il momento resistente di progetto (EC3) per i fenomeni di instabilità di una trave lateralmente non vincolata può essere assunto pari a:

$$M_{b,Rd} = \chi_{LT} \cdot W_{pl} \frac{f_{yk}}{\gamma_{M0}}$$

Il fattore χ_{LT} è il fattore di riduzione per l'instabilità flesso-torsionale, dipendente dal tipo di profilo impiegato; può essere determinato per profili laminati o composti saldati dalla formula:

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \overline{\lambda}_{LT}^2}}$$

$$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} \cdot (\overline{\lambda}_{LT}^2 - \overline{0.2}) + \overline{\lambda}_{LT}^2 \right]$$

Il coefficient α_{LT} è un fattore di impefezione funzione del tipo di sezione.

Buckling curve	a	ь	c	d
Imperfection factor α_{LT}	0,21	0,34	0,49	0,76

Cross-section	Limits	Buckling curve
Rolled I-sections	h/b ≤ 2	a
Rolled 1-sections	h/b > 2	b
Welded I-sections	h/b ≤ 2	c
weided 1-sections	h/b > 2	d
Other cross-sections	-	d

Il coefficiente di snellezza adimensionale λ_{LT} è dato dalla formula:

$$\overline{\lambda_{LT}} = \sqrt{\frac{W_{pl} \cdot f_{yk}}{M_{cr}}}$$

Mer è il momento critico elastico di instabilità torsionale:

$$M_{cr} = C_1 \cdot \frac{\pi^2 E I_Y}{(k \cdot L_{cr})^2} \cdot \sqrt{\left(\frac{k}{k_w}\right)^2 \cdot \frac{I_\omega}{I_Y} + \frac{(k \cdot L_{cr})^2 \cdot G I_T}{\pi^2 \cdot L_{cr} \cdot E I_y} + \left(C_2 \cdot Z_g\right)^2} - \left(C_2 \cdot Z_g\right)$$

Con:

z_g distanza tra punto di applicazione del carico e centro di taglio

k coefficiente di lunghezza efficace nei confronti nei confronti della rotazione di un estremo nel piano

k_w coefficiente di lunghezza efficace nei confronti nei confronti dell'ingobbamento di un estremo

L_{cr} distanza tra due ritegni torsionali

I valori di C1 e C2 sono tabellati in funzione della condizione di carico e di vincolo.

Procedimento

1)Determinazione dei coefficienti:

k=1

 $k_{\omega}=1$

 $z_{\sigma}=0 \text{ mm}$

 $C_1 = 1,879$

 $L_{cr}=2400 \text{ mm}$

 $\alpha_{LT} = 0.34$

2)Calcolo del momento critico:

$$M_{cr} = 1,879 \cdot \frac{\pi^2 \, 210000 \cdot 7781000}{(2400)^2} \cdot \sqrt{\frac{I_{\omega}}{I_{\gamma}} + \frac{\cdot 2400^2 \cdot 80769 \cdot 281500}{\pi^2 \cdot 2400 \cdot 210000 \cdot 7781000}} = 972,1kNm$$

$$\overline{\lambda_{LT}} = \sqrt{\frac{W_{pl} \cdot f_{yk}}{M_{cr}}} = \sqrt{\frac{804000 \cdot 275}{972100000}} = 0,477$$

4) Calcolo del fattore di riduzione
$$\chi_{LT}$$
:
$$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} \cdot (\overline{\lambda_{LT}} - \overline{0.2}) + \overline{\lambda_{LT}^2} \right] = 0.5 \cdot \left[1 + 0.34 \cdot (\overline{0.477} - \overline{0.2}) + 0.477^{\frac{7}{2}} \right] = 0.660$$

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \overline{\lambda_{LT}^2}}} = \frac{1}{0.618 + \sqrt{0.618^2 - \overline{0.477^2}}} = 0.894$$

5)Calcolo del momento resistente di progetto:

$$M_{b,Rd} = \chi_{LT} \cdot W_{pl} \frac{f_{yk}}{\gamma_{M0}} = 0.894 \cdot 804300 \frac{275}{1,05} = 188321100 N \cong 188kNm$$

Poiché si ha M_{sd} =153,0kNm< $M_{b,Rd}$ =188,0kNm la verifica risulta soddisfatta.

Prospetto F 1.1 - Valori dei coefficienti C_1 , C_2 e C_3 corrispondenti ai valori del coefficiente k: momento all'estremità

Condizioni di carico	Diagramma del momento	Valori di	Valor	dei coef	ficienti	
e di vincolo	flettente	k	C ₁	C ₂	G	
	ψ=+1	1,0	1,000		1,000	
		0,7	1,000	- 5	1,113	
		0,5	1,000		1,144	
	<i>1</i> √=+3/4	1,0	1,141		0,996	
		0,7	1,270	-	1,565	
		0,5	1,305		2,283	
	ψ=+1/2	1,0	1,323		0,992	
		0,7	1,473		1,556	
		0,5	1,514		2,271	
	ψ=+1/4	1,0	1,563		0,977	
		0,7	1,739	- 23	1,531	
		0,5	1,788		2,235	
	ψ=0	1,0	1,879		0,939	
, M		0,7	2,092		1,473	
(0,5	2,150		2,150	
	₩=-1/4	1,0	2,281		0,855	
		0,7	2,538		2,283 0,992 1,556 2,271 0,977 1,531 2,235 0,939 1,473 2,150 0,855 1,340 1,957 0,676 1,059 1,546 0,366 0,575	
Î	93	0,5	2,609		1,957	
	₩=-1/2	1,0	2,704		0,676	
		0,7	3,009		C ₃ 1,000 1,113 1,144 0,998 1,565 2,283 0,992 1,556 2,271 0,977 1,531 2,235 0,939 1,473 2,150 0,855 1,340 1,957 0,676 1,059 1,546	
	~	0,5	3,093		1,546	
	$\psi = -3/4$	1,0	2,927		0,366	
	$\psi = -3/4$	0,7	3,009	-	0,575	
	#	0,5	3,093		0,837	
	ψ=-1	1,0	2,752		0,000	
	V ==1	0,7	3,063	100	0,000	
		0,5	3,149		0,000	

-Verifica agli stati limite di esercizio (deformazione)

$$\delta_{tot} = \delta_1 + \delta_2$$

 δ_1 Spostamento elastico dovuto ai carichi permanenti

 δ_2 Spostamento elastico dovuto ai carichi variabili

 δ_c monta iniziale della trave

 δ_{max} spostamento finale depurato della monta iniziale = δ_{tot} - δ_c

Abbassamento totale:

$$\delta_{\max} = \frac{5}{384} \cdot \frac{0.49 \cdot 4800^4}{210000 \cdot (11770 \cdot 10^4)} + \frac{1}{48} \cdot \frac{[(0.31 + 4.56 + 8.45 + 4.8) \cdot 4800] \cdot 4800^3}{210000 \cdot (11770 \cdot 10^4)} = 8.3 mm \le 19.2 mm (= \frac{L}{250})$$

Abbassamento dovuto ai carichi variabili:

$$\delta_2 = \frac{1}{48} \cdot \frac{(4,8 \cdot 4800) \cdot 4800^3}{210000 \cdot (11770 \cdot 10^4)} = 2,15 mm \le 16 mm (= \frac{L}{300})$$

2.4. Trave N° 4

Poiché devo verificare la trave n°4 devo valutare il carico concentrato trasferito su di essa dalla trave su di essa vincolata.

Il carico sulla trave n°4 sarà pari alla metà del carico della trave che definita come n°1.

Avremo una F_{sd}=63,0kN

-Dati del profilo:

1			
-altezza	h	300	mm
-larghezza	b	150	mm
-spessore delle ali	${ m t_f}$	10,7	mm
-spessore dell'anima	$t_{\rm w}$	7,1	mm
-raggio di raccordo	r	15	mm
-area	A	5381	mm^2
-momento d'inerzia rispetto all'asse forte	I_x	8356	cm ⁴
-momento d'inerzia rispetto all'asse debole	$\mathbf{I}_{\mathbf{y}}$	603,8	cm^4
-momento d'inerzia torsionale	$ m I_T$	20,12	cm ⁴
-costante d'ingobbamento= = $\frac{I_y \cdot (h - t_f)^2}{4}$	${ m I}_{\omega}$	126336	6.8 cm ⁶
-modulo di resistenza plastico rispetto all'asse forte	$\mathrm{W}_{\mathrm{pl,x}}$	628,4	cm ³
-Peso per unità di lunghezza	g_t	0,42	kN/m

-Classificazione del profilo per le azioni flettenti (par.4.2.3.1)

acciaio S275
$$\rightarrow \varepsilon = \sqrt{\frac{235}{f_y}} = 0,924 \text{ con } f_y=275\text{N/mm}^2 \text{ tensione di snervamento dell'acciaio.}$$

Poiché è rispettato il seguente rapporto:

$$\frac{d}{t_w} = 35,01 < 72 \cdot \varepsilon = 66,528 \rightarrow 1$$
'anima appartiene alla classe 1,

dove d=h-2·(t_f+r) è l'altezza dell'anima.

Poiché è rispettato il seguente rapporto:

$$\frac{c}{t_f}$$
 = 5,28 < 9 · ε = 8,316 \rightarrow 1'ala appartiene alla classe 1,

dove $c=(b-2\cdot r-t_w)/2$.

La sezione è classificata in base alla classe della componente più alta, nel nostro caso la sezione appartiene alla classe 1.

-Calcolo delle sollecitazioni

Massimo taglio sollecitante = taglio dovuto al carico concentrato + taglio dovuto al peso proprio della trave+ taglio dovuto al peso della tamponatura.

$$V_{sd} = \frac{F_{sd}}{2} + \frac{1.3 \cdot 0.42 \cdot 4.8}{2} + \frac{1.5 \cdot 8.00 \cdot 4.8}{2} = 61.6kN$$

Massimo momento sollecitante = momento dovuto al carico concentrato + momento dovuto al peso proprio della trave + momento dovuto al peso della tamponatura.

$$M_{sd} = \frac{F_{sd} \cdot 4.8}{4} + \frac{1.3 \cdot 0.42 \cdot 4.8^{2}}{8} + \frac{1.5 \cdot 8.00 \cdot 4.8^{2}}{8} = 112.0 kNm$$

-Calcolo della resistenza a taglio

 $A_V = A - 2b \cdot t_f + (t_w + 2 \cdot r)t_f = 2568 \text{ mm}^2$

$$V_{Pl,Rd} = A_v \frac{f_{yk} / \sqrt{3}}{\gamma_{M0}} = 2568 \cdot \frac{275}{1.05 \cdot \sqrt{3}} = 388309N \approx 388kN$$

Poiché si ha V_{sd} =62,0 kN< $V_{Pl,Rd}$ =388kN la verifica risulta soddisfatta.

Poiché il taglio sollecitante V_{sd} non risulta mai superiore al 50% del taglio resistente plastico $V_{Pl,Rd}$ si può trascurare l'interazione tra il taglio e il momento flettente nella successiva verifica.

-Calcolo della resistenza al momento flettente

Il momento resistente di progetto è (essendo la sezione di classe1):

$$M_{c,Rd} = W_{pl} \frac{f_{yk}}{\gamma_{M0}} = 628400 \cdot \frac{275}{1.05} = 164580952N \approx 164,5kNm$$

Poiché si ha M_{sd}=112,0kNm<M_{c,Rd}=164,5kNm la verifica risulta soddisfatta.

-Verifica alla stabilità delle aste inflesse (svergolamento)

Approccio EC3

Il momento resistente di progetto (EC3) per i fenomeni di instabilità di una trave lateralmente non vincolata può essere assunto pari a:

$$M_{b,Rd} = \chi_{LT} \cdot W_{pl} \frac{f_{yk}}{\gamma_{M0}}$$

Il fattore χ_{LT} è il fattore di riduzione per l'instabilità flesso-torsionale, dipendente dal tipo di profilo impiegato; può essere determinato per profili laminati o composti saldati dalla formula:

$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \overline{\lambda_{LT}^2}}}$$

$$\Phi_{LT} = 0.5 \cdot \left[1 + \alpha_{LT} \cdot (\overline{\lambda_{LT}^2} - \overline{0.2}) + \overline{\lambda_{LT}^2} \right]$$

Il coefficient α_{LT} è un fattore di impefezione funzione del tipo di sezione.

Buckling curve	a	ь	С	d
Imperfection factor α_{LT}	0,21	0,34	0,49	0,76

Cross-section	Limits	Buckling curve
Rolled I-sections	$h/b \le 2$	a
Rolled 1-sections	h/b > 2	b
Welded I-sections	$h/b \le 2$	c
weided 1-sections	h/b > 2	d
Other cross-sections	-	d

Il coefficiente di snellezza adimensionale λ_{LT} è dato dalla formula:

$$\overline{\lambda_{LT}} = \sqrt{\frac{W_{pl} \cdot f_{yk}}{M_{cr}}}$$

Mer è il momento critico elastico di instabilità torsionale:

$$M_{cr} = C_{1} \cdot \frac{\pi^{2} E I_{Y}}{\left(k \cdot L_{cr}\right)^{2}} \cdot \sqrt{\left(\frac{k}{k_{w}}\right)^{2} \cdot \frac{I_{\omega}}{I_{Y}} + \frac{\left(k \cdot L_{cr}\right)^{2} \cdot G I_{T}}{\pi^{2} \cdot L_{cr} \cdot E I_{y}} + \left(C_{2} \cdot z_{g}\right)^{2}} - \left(C_{2} \cdot z_{g}\right)$$

Con:

distanza tra punto di applicazione del carico e centro di taglio Zg

k coefficiente di lunghezza efficace nei confronti nei confronti della rotazione di un estremo nel piano

coefficiente di lunghezza efficace nei confronti nei confronti dell'ingobbamento di un estremo $k_{\rm w}$

 L_{cr} distanza tra due ritegni torsionali

I valori di C1 e C2 sono tabellati in funzione della condizione di carico e di vincolo.

Procedimento

1)Determinazione dei coefficienti:

k=1

 $k_{\omega}=1$

 $z_g=0 \text{ mm}$

 $C_1 = 1.879$

 $L_{cr}=2400 \text{ mm}$

 $\alpha_{LT} = 0.21$

2)Calcolo del momento critico

$$M_{cr} = 1,879 \cdot \frac{\pi^2 210000 \cdot 6038000}{(2400)^2} \cdot \sqrt{\frac{I_{\omega}}{I_{v}} + \frac{\cdot 2400^2 \cdot 80769 \cdot 201200}{\pi^2 \cdot 2400 \cdot 210000 \cdot 6038000}} = 687,1kNm$$

3)Calcolo di λ_{LT} :

$$\overline{\lambda_{LT}} = \sqrt{\frac{W_{pl} \cdot f_{yk}}{M_{rr}}} = \sqrt{\frac{628400 \cdot 275}{687100000}} = 0,501$$

4) Calcolo del fattore di riduzione
$$\chi_{LT}$$
:
$$\Phi_{LT} = 0.5 \cdot \left[\mathbf{I} + \alpha_{LT} \cdot (\overline{\lambda_{LT}} - \overline{0.2}) + \overline{\lambda_{LT}^2} \right] = 0.5 \cdot \left[\mathbf{I} + 0.21 \cdot (0.501 - 0.2) + 0.501^{\frac{1}{2}} \right] = 0.657$$

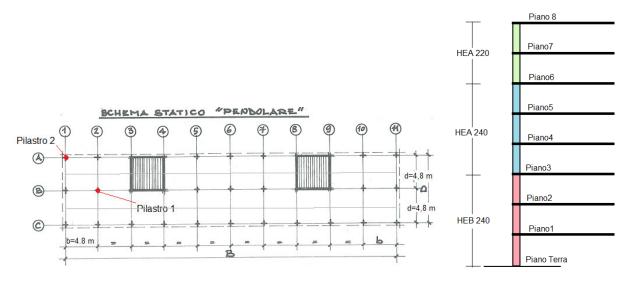
$$\chi_{LT} = \frac{1}{\Phi_{LT} + \sqrt{\Phi_{LT}^2 - \overline{\lambda}_{LT}^2}} = \frac{1}{0.657 + \sqrt{0.657^2 - 0.501^2}} = 0.924$$

5)Calcolo del momento resistente di progetto:

$$M_{b,Rd} = \chi_{LT} \cdot W_{pl} \frac{f_{yk}}{\gamma_{M0}} = 0.924 \cdot 628400 \frac{275}{1.05} = 152072800 N \cong 152kNm$$

Poiché si ha M_{sd}=112,7kNm<M_{h Rd}=152,0kNm la verifica risulta soddisfatta.

-Verifica agli stati limite di esercizio (deformazione)


Abbassamento totale

$$\delta_{\max} = \frac{5}{384} \cdot \frac{(0.42 + 8) \cdot 4800^4}{210000 \cdot (8356 \cdot 10^4)} + \frac{1}{48} \cdot \frac{[(0.31 + 4.56 + 8.45 + 4.8) \cdot 2400] \cdot 4800^3}{210000 \cdot (8356 \cdot 10^4)} = 9.0 \\ nm \le 19.2 \\ nm (= \frac{L}{250})$$

Abbassamento dovuto ai carichi variabili:

$$\delta_2 = \frac{1}{48} \cdot \frac{(4.8 \cdot 2400) \cdot 4800^3}{210000 \cdot (8356 \cdot 10^4)} = 1.51 mm \le 16 mm (= \frac{L}{300})$$

3. Verifica dei pilastri

3.1.Pilastrata N° 1

-Carichi sul pilastro (poiché l'area d'influenza di un pilastro è pari a 2,4 m x 2,4 m, ogni pilastro porta i carichi di $23,1 \text{ m}^2$ di solaio):

Dati del pilastro HEA 220:			
-altezza	h	210	mm
-larghezza	b	220	mm
-spessore delle ali	t_{f}	11	mm
-spessore dell'anima	$t_{\rm w}$	7	mm
-raggio di raccordo	r	18	mm
-area	A	6434	mm^2
-momento d'inerzia rispetto all'asse forte	$\mathbf{I}_{ ext{y-y}}$	5410	cm ⁴
-momento d'inerzia rispetto all'asse debole	I_{z-z}	1955	cm ⁴
-Peso per unità di lunghezza	g_t	0,505	kN/m
Dati del pilastro HEA 240:			
-altezza	h	230	mm
-larghezza	b	240	mm
-spessore delle ali	t_{f}	12	mm
-spessore dell'anima	$t_{\rm w}$	7,5	mm
-raggio di raccordo	r	21	mm
-area	A	7684	mm^2
-momento d'inerzia rispetto all'asse forte	I_{y-y}	7763	cm ⁴
-momento d'inerzia rispetto all'asse debole	I _{z-z}	2769	cm ⁴
-Peso per unità di lunghezza	g _t	0,603	kN/m
1 eso per unita di fungiozza	St	0,003	KI WIII
Dati del pilastro HEB240:			
-altezza	h	240	mm
-larghezza	b	240	mm
-spessore delle ali	t_{f}	17	mm
-spessore dell'anima	$t_{\rm w}$	10	mm
-raggio di raccordo	r	21	mm
-area	A	10600	mm^2

-momento d'inerzia rispetto all'asse forte	I_{y-y}	11260	cm ⁴
-momento d'inerzia rispetto all'asse debole	I_{z-z}	3923	cm ⁴
-Peso per unità di lunghezza	g_t	0,832	kN/m

-Carichi sul pilastro

Peso proprio della trave n°3 IPE 240 0, $31 \text{ kN/m} \cdot 4.8 \text{m} = 1.5 \text{ kN}$ Peso proprio della trave n°3 IPE 330 0,49 kN/m·4,9m= 2,35 kN

Peso travi sul pilastro: 2,35+1,5+0,375+0,375+0,375+0,375=5,35 kN

Peso proprio del solaio: $1,9 \text{ kN/m}^2 \cdot 23,1 \text{m}^2 = 43,8 \text{ kN/m}$ Carichi permanenti portati: $3,52 \text{ kN/m}^2 \cdot 23,1 \text{m}^2 = 81,1 \text{ kN/m}$ Carichi variabili: $2,00 \text{ kN/m}^2 \cdot 23,1 \text{m}^2 = 46,1 \text{ kN/m}$

Carico dovuto ai permanenti strutturali e portati:

 $N_{Ed} = 1.3 \cdot (5.55 + 43.8) + 1.5 \cdot 81.1 = 185.6kN$

		Peso Propi	rio + Carico Perma	inente	
Piano	Profilo scelto	Quota (m)	Carico Solaio (kN)	P. Pilastro (kN) x 1.3	NP(kN)
Piano 8°		26.4	186.0		0
Piano 7°	HEA 220	23.1	186.0	2.1	188
Piano 6°	HEA 220	19.8	186.0	2.1	376
Piano 5°	HEA 240	16.5	186.0	2.6	565
Piano 4°	HEA 240	13.2	186.0	2.6	753
Piano 3°	HEA 240	9.9	186.0	2.6	942
Piano 2°	HEB 240	6.6	186.0	3.6	1132
Piano 1°	HEB 240	3.3	186.0	3.6	1321
Piano Terra	HEB 240	0	0.0	3.6	1511
Peso totale			1488	23	

	Amplificazior	ne Carico vari	abile piano 8	3°		Amplificazione Carico variabile piano 7°					
Piano	C.var. (kN)	Coefficiente	C.var. (kN)	Nv(kN)	Ntot=Np+Nv (kN)	Piano	C.var. (kN)	Coefficiente	C.var. (kN)	Nv(kN)	Ntot=Np+Nv (kN)
Piano 8°	46.1	1.50	69	0	0	Piano 8°	46.1	1.05	48	0	0
Piano 7°	46.1	1.05	48	69	257	Piano 7°	46.1	1.50	69	48	237
Piano 6°	46.1	1.05	48	118	494	Piano 6°	46.1	1.05	48	118	494
Piano 5°	46.1	1.05	48	166	731	Piano 5°	46.1	1.05	48	166	731
Piano 4°	46.1	1.05	48	214	968	Piano 4°	46.1	1.05	48	214	968
Piano 3°	46.1	1.05	48	263	1205	Piano 3°	46.1	1.05	48	263	1205
Piano 2°	46.1	1.05	48	311	1443	Piano 2°	46.1	1.05	48	311	1443
Piano 1°	46.1	1.05	48	360	1681	Piano 1°	46.1	1.05	48	360	1681
Piano Terra	0	0.00	0	408	1919	Piano Terra	0	0.00	0	408	1919
Peso totale	368.8	8.85				Peso totale	368.8	8.85			

-	Amplificazior	ne Carico vari	abile piano 6	°		Amplificazione Carico variabile piano 5°				5°	
Piano	C.var. (kN)	Coefficiente	C.var. (kN)	Nv(kN)	Ntot=Np+Nv (kN)	Piano	C.var. (kN)	Coefficiente	C.var. (kN)	Nv(kN)	Ntot=NP+Nv (kN)
Piano 8°	46.1	1.05	48	0	0	Piano 8°	46.1	1.05	48	0	0
Piano 7°	46.1	1.05	48	48	237	Piano 7°	46.1	1.05	48	48	237
Piano 6°	46.1	1.50	69	97	473	Piano 6°	46.1	1.05	48	97	473
Piano 5°	46.1	1.05	48	166	731	Piano 5°	46.1	1.50	69	145	710
Piano 4°	46.1	1.05	48	214	968	Piano 4°	46.1	1.05	48	214	968
Piano 3°	46.1	1.05	48	263	1205	Piano 3°	46.1	1.05	48	263	1205
Piano 2°	46.1	1.05	48	311	1443	Piano 2°	46.1	1.05	48	311	1443
Piano 1°	46.1	1.05	48	360	1681	Piano 1°	46.1	1.05	48	360	1681
Piano Terra	0	0.00	0	408	1919	Piano Terra	0	0.00	0	408	1919
Peso totale	368.8					Peso totale	368.8				

,	Amplificazior	ne Carico vari	abile piano 4	°		Amplificazione Carico variabile piano 3°				3°	
Piano	C.var. (kN)	Coefficiente	C.var. (kN)	Nv(kN)	Ntot=Np+Nv (kN)	Piano	C.var. (kN)	Coefficiente	C.var. (kN)	Nv(kN)	Ntot=NP+Nv (kN)
Piano 8°	46.1	1.05	48	0	0	Piano 8°	46.1	1.05	48	0	0
Piano 7°	46.1	1.05	48	48	237	Piano 7°	46.1	1.05	48	48	237
Piano 6°	46.1	1.05	48	97	473	Piano 6°	46.1	1.05	48	97	473
Piano 5°	46.1	1.05	48	145	710	Piano 5°	46.1	1.05	48	145	710
Piano 4°	46.1	1.50	69	194	947	Piano 4°	46.1	1.05	48	194	947
Piano 3°	46.1	1.05	48	263	1205	Piano 3°	46.1	1.50	69	242	1184
Piano 2°	46.1	1.05	48	311	1443	Piano 2°	46.1	1.05	48	311	1443
Piano 1°	46.1	1.05	48	360	1681	Piano 1°	46.1	1.05	48	360	1681
Piano Terra	0	0.00	0	408	1919	Piano Terra	0	0.00	0	408	1919
Peso totale	368.8					Peso totale	368.8				·

,	Amplificazior	ne Carico vari	abile piano 2	°		Amplificazione Carico variabile piano 1°					
Piano	C.var. (kN)	Coefficiente	C.var. (kN)	Nv(kN)	Ntot=Np+Nv (kN)	Piano	C.var. (kN)	Coefficiente	C.var. (kN)	Nv(kN)	Ntot=Np+Nv (kN)
Piano 8°	46.1	1.05	48	0	0	Piano 8°	46.1	1.05	48	0	0
Piano 7°	46.1	1.05	48	48	237	Piano 7°	46.1	1.05	48	48	237
Piano 6°	46.1	1.05	48	97	473	Piano 6°	46.1	1.05	48	97	473
Piano 5°	46.1	1.05	48	145	710	Piano 5°	46.1	1.05	48	145	710
Piano 4°	46.1	1.05	48	194	947	Piano 4°	46.1	1.05	48	194	947
Piano 3°	46.1	1.05	48	242	1184	Piano 3°	46.1	1.05	48	242	1184
Piano 2°	46.1	1.50	69	290	1422	Piano 2°	46.1	1.05	48	290	1422
Piano 1°	46.1	1.05	48	360	1681	Piano 1°	46.1	1.50	69	339	1660
Piano Terra	0	0.00	0	408	1919	Piano Terra	0	0.00	0	408	1919
Peso totale	368.8					Peso totale	368.8				

Questa procedura, valida per carichi diversi nei piani, risulta superflua nel nostro esempio avendo ipotizzato i piani caricati tutti nello stesso modo. Si perviene in questo caso agli stessi risultati dell'esempio caricando con il valore del coefficiente di amplificazione maggiore direttamente l'ultimo piano.

-Massime azioni assiali con cui verificare i pilastri

1° Tronco HEA 220 (base piano n°6)

 N_{max} : 494 kN

2° Tronco HEA 240 (base piano n°3)

 N_{max} : 1205 kN

3° Tronco HEB 240 (base piano Terra)

 N_{max} : 1919 kN

-Classificazione del profilo per le azioni flettenti

Profilo HEA 220:

acciaio S235 $\rightarrow \varepsilon = \sqrt{\frac{235}{f_y}} = 0,924 \text{ con } f_y = 275 \text{N/mm}^2 \text{ tensione di snervamento dell'acciaio.}$

Poiché è rispettato il seguente rapporto:

$$\frac{d}{t_w \cdot \varepsilon} = 23.5 < 33 \cdot \rightarrow 1$$
'anima appartiene alla classe 1,

dove d=h-2· (t_f+r) è l'altezza dell'anima.

Poiché è rispettato il seguente rapporto:

$$\frac{c}{t_f \cdot \varepsilon} = 8,7 < 9 \cdot \rightarrow$$
l'ala appartiene alla classe 1,

dove $c=(b-2\cdot r-t_w)/2$.

La sezione è classificata in base alla classe della componente più alta, nel nostro caso la sezione appartiene alla classe 1.

Profilo HEA 240:

Poiché è rispettato il seguente rapporto:

$$\frac{d}{t_w \cdot \varepsilon} = 23,66 < 33 \cdot \rightarrow 1$$
'anima appartiene alla classe 1,

dove d=h-2·(t_f+r) è l'altezza dell'anima.

Poiché è rispettato il seguente rapporto:

$$\frac{c}{t_f \cdot \mathcal{E}} = 8,59 < 9 \cdot \rightarrow$$
l'ala appartiene alla classe 1,

dove $c=(b-2\cdot r-t_w)/2$.

La sezione è classificata in base alla classe della componente più alta, nel nostro caso la sezione appartiene alla classe 1.

Profilo HEB240:

$$\frac{d}{t_w \cdot \varepsilon} = 17,75 < 33 \cdot \rightarrow 1$$
'anima appartiene alla classe 1,

dove d=h-2·(t_f+r) è l'altezza dell'anima.

Poiché è rispettato il seguente rapporto:

$$\frac{c}{t_f \cdot \varepsilon} = 5.98 < 9 \cdot \rightarrow \text{l'ala appartiene alla classe 1},$$

dove $c=(b-2\cdot r-t_w)/2$.

La sezione è classificata in base alla classe della componente più alta, nel nostro caso la sezione appartiene alla classe 1.

-Compressione

-1° Tronco HEA 220 (base piano n°6), N_{max}:494 kN

Resistenza di calcolo a compressione:

$$N_{c,Rd} = \frac{A \cdot f_{yk}}{\gamma_{M0}} = \frac{6434 \cdot 275}{1,05} \cong 1685kN$$

Poiché si ha N_{Ed} =494kN< $N_{c,Rd}$ =1685kN la verifica risulta soddisfatta.

-2° Tronco HEA 240 (base piano n°3), N_{max}:1205 kN

Resistenza di calcolo a compressione:

$$N_{c,Rd} = \frac{A \cdot f_{yk}}{\gamma_{M0}} = \frac{7684 \cdot 275}{1,05} \cong 2012kN$$

Poiché si ha N_{Ed}=1205kN< N_{c,Rd} =2012kN la verifica risulta soddisfatta.

-3° Tronco HEB 240 (base piano Terra), N_{max} :1919 kN

Resistenza di calcolo a compressione:

$$N_{c,Rd} = \frac{A \cdot f_{yk}}{\gamma_{M0}} = \frac{10600 \cdot 275}{1,05} \cong 2776kN$$

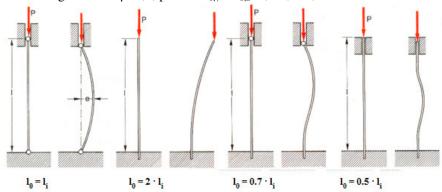
Poiché si ha N_{Ed}=1919kN< N_{c.Rd} =2776kN la verifica risulta soddisfatta.

-Instabilità

Resistenza di calcolo all'instabilità:

$$N_{b,Rd} = \frac{\chi \cdot A \cdot f_{yk}}{\gamma_{M1}}$$

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 + \overline{\lambda^2}}} \le 1 \qquad \Phi = 0,5[1 + \alpha(\overline{\lambda} - 0,2) + \overline{\lambda}^2]$$


$$\overline{\lambda} = \sqrt{\frac{A \cdot f_{yk}}{N_{cr}}}$$

N_{cr}è il carico critico elastico dell'asta pari a:

$$N_{cr} = \frac{\pi^2 \cdot E \cdot I}{L_0^2}$$

dove $L_0=\beta \cdot L$ è la lunghezza di libera inflessione.

Per un'asta incernierata agli estremi $\beta=1,0$, per cui $L_{0,y}=L_{0,z}=1,0\cdot3,3=3,3$ m.

-1° Tronco HEA 220 (base piano n°6), N_{max}:494 kN

Per le sezioni laminate quando si ha h/b<1,2 e t_f<100 mm, si considera la curva d'instabilità b per l'asse forte y-y e la curva d'instabilità c per l'asse debole z-z.

-asse forte y-y

Dalla curva d'instabilità b ricavo il fattore di imperfezione α =0,34.

$$N_{cr} = \frac{\pi^2 \cdot E \cdot I_{y-y}}{L_{0,y}^2} = \frac{\pi^2 \cdot 210000 \cdot 54100000}{3300^2} \cong 10286kN$$

$$\overline{\lambda} = \sqrt{\frac{6434 \cdot 275}{10286000}} = 0,414$$

$$\Phi = 0.5[1 + 0.34(0.414 - 0.2) + 0.414^{2}] = 0.622$$

$$\chi = \frac{1}{0,622 + \sqrt{0,622^2 - 0,414^2}} = 0,920$$

e quindi la resistenza di calcolo a compressione rispetto all'asse forte y-y:
$$N_{b,Rd} = \frac{0,730\cdot 6434\cdot 275}{1,05} = 1550kN$$

-asse debole z-z

Dalla curva d'instabilità c ricavo il fattore d' imperfezione
$$\alpha$$
=0,49.
$$N_{cr} = \frac{\pi^2 \cdot E \cdot I_{z-z}}{L_{0,z}^2} = \frac{\pi^2 \cdot 210000 \cdot 19550000}{3300^2} = 3717kN$$

$$\overline{\lambda} = \sqrt{\frac{6434 \cdot 275}{3717000}} = 0,689$$

$$\Phi = 0.5[1 + 0.49(0.689 - 0.2) + 0.689^{2}] = 0.857$$

$$\chi = \frac{1}{0.857 + \sqrt{0.857^2 - 0.689^2}} = 0.731$$

e quindi la resistenza di calcolo a compressione rispetto all'asse debole z-z:

$$N_{b,Rd} = \frac{0.731 \cdot 6434 \cdot 275}{1.05} = 1231kN$$

La resistenza di calcolo a compressione sarà la minore tra quelle calcolate rispetto ai due assi. Poiché si ha N_{Ed} =494kN< $N_{b,Rd}$ =1231kN la verifica risulta soddisfatta.

-2° Tronco HEA 240 (base piano n°3), N_{max}:1205 kN

Per le sezioni laminate quando si ha h/b<1,2 e t_f <100 mm, si considera la curva d'instabilità b per l'asse forte y-y e la curva d'instabilità c per l'asse debole z-z.

-asse forte y-y

Dalla curva d'instabilità b ricavo il fattore di imperfezione α=0,34.

$$\begin{split} N_{cr} &= \frac{\pi^2 \cdot E \cdot I_{y-y}}{L_{0,y}^2} = \frac{\pi^2 \cdot 210000 \cdot 77630000}{3300^2} \cong 14760kN \\ \overline{\lambda} &= \sqrt{\frac{7684 \cdot 275}{14760000}} = 0,378 \\ \Phi &= 0,5[1 + 0,34(0,378 - 0,2) + 0,378^2] = 0,601 \\ \chi &= \frac{1}{0,601 + \sqrt{0,601^2 + 0,378^2}} = 0,936 \end{split}$$

e quindi la resistenza di calcolo a compressione rispetto all'asse forte y-y:

$$N_{b,Rd} = \frac{0.936 \cdot 7684 \cdot 275}{1.05} = 1833kN$$

-asse debole z-z

Dalla curva d'instabilità c ricavo il fattore di imperfezione α=0,49.

$$N_{cr} = \frac{\pi^2 \cdot E \cdot I_{z-z}}{L_{0,z}^2} = \frac{\pi^2 \cdot 210000 \cdot 27690000}{3300^2} = 5264kN$$

$$\overline{\lambda} = \sqrt{\frac{7684 \cdot 275}{5264000}} = 0,633$$

$$\Phi = 0,5[1 + 0,49(0,683 - 0,2) + 0,683^2] = 0,806$$

$$\chi = \frac{1}{0,806 + \sqrt{0,806^2 - 0,633^2}} = 0,766$$

e quindi la resistenza di calcolo a compressione rispetto all'asse debole z-z:

$$N_{b,Rd} = \frac{0.766 \cdot 7684 \cdot 275}{1.05} = 1541kN$$

La resistenza di calcolo a compressione sarà la minore tra quelle calcolate rispetto ai due assi. Poiché si ha N_{Ed} =1205kN< $N_{b,Rd}$ =1541kN la verifica risulta soddisfatta.

-3° Tronco HEB 240 (base piano Terra), N_{max}:1919 kN

Per le sezioni laminate quando si ha h/b<1,2 e t_f<100 mm, si considera la curva d'instabilità b per l'asse forte y-y e la curva d'instabilità c per l'asse debole z-z.

-asse forte y-y

Dalla curva d'instabilità b ricavo il fattore d'imperfezione α =0,34.

$$N_{cr} = \frac{\pi^2 \cdot E \cdot I_{y-y}}{L_{0,y}^2} = \frac{\pi^2 \cdot 210000 \cdot 112600000}{3300^2} \cong 21408kN$$

$$\bar{\lambda} = \sqrt{\frac{10600 \cdot 275}{21408000}} = 0,369$$

$$\Phi = 0,5[1 + 0,34(0,369 - 0,2) + 0,778^{2}] = 0,597$$

$$\chi = \frac{1}{0,597 + \sqrt{0,597^{2} - 0.369^{2}}} = 0,937$$

e quindi la resistenza di calcolo a compressione rispetto all'asse forte y-y:

$$N_{b,Rd} = \frac{0.937 \cdot 10600 \cdot 275}{1.05} = 2601kN$$

-asse debole z-z

Dalla curva d'instabilità c ricavo il fattore d'imperfezione α=0,49.

$$\begin{split} N_{cr} &= \frac{\pi^2 \cdot E \cdot I_{z-z}}{L_{0,z}^2} = \frac{\pi^2 \cdot 210000 \cdot 39230000}{3300^2} = 7459kN \\ \overline{\lambda} &= \sqrt{\frac{10600 \cdot 275}{7459000}} = 0,625 \\ \Phi &= 0,5[1 + 0,49(0,625 - 0,2) + 0,625^2] = 0,799 \\ \chi &= \frac{1}{0,799 + \sqrt{0,799^2 - 0,625^2}} = 0,771 \end{split}$$

e quindi la resistenza di calcolo a compressione rispetto all'asse debole z-z:

$$N_{b,Rd} = \frac{0.771 \cdot 10600 \cdot 275}{1.05} = 2140kN$$

La resistenza di calcolo a compressione sarà la minore tra quelle calcolate rispetto ai due assi. Poiché si ha N_{Ed} =1919kN< $N_{b,Rd}$ =2140kN la verifica risulta soddisfatta.