The influence of Natura 2000 sites on land-taking processes at the regional level. An empirical analysis concerning Sardinia (Italy)
Introduction

Natura 2000 Network in Sardinia

Definition of land take and of a land-take related variable

Identification of potential determinants of land take

Results of the econometric model

Discussion and conclusions: the role of Natura 2000 sites in mitigating land taking processes

C. Zoppi, S. Lai - The influence of Natura 2000 sites on land-taking processes at the regional level: An empirical analysis concerning Sardinia (Italy)
1. INTRODUCTION

- In the EU, the Birds and Habitats Directives are the cornerstone of nature legislation and of biodiversity policies.
- The Habitats Directive establishes Natura 2000, a network of core breeding and resting sites for rare and threatened species, and for rare and protected natural habitat types.
- Conservation measures are established to protect and maintain natural habitats and species of Community interest at a favorable conservation status.

1. INTRODUCTION

Within **Natura 2000 sites**: land cover is mostly non-artificial.

The Directives should aim at maintaining this present status, if natural habitats and species are to be preserved.

“**Land take**” (or “land uptake”): loss of agriculture, forest and other natural or semi-natural land resulting from urban and other artificial land developments.

Land take is significant issue in the EU, which established an ambitious goal: ("Roadmap to a Resource Efficient Europe", COM 571/2011)
- no net land take by 2050
- impacts of EU policies on land take to be taken under control in 2014-20 funding programs.

Aim: to understand what role Natura 2000 plays in affecting land-taking.

Case study: NUTS2 Italian region of Sardinia, where:
- strict rules on land development have been enforced through regional landscape plans
- an extensive Natura 2000 Network (≈19% of the region) was set up
2. NATURA 2000 IN SARDINIA

- Why choosing Sardinia as a case study?
 - Detailed land cover data are available ➔ a dynamic study of land take is possible.
 - It is an island ➔ the boundaries of the region where the Natura 2000 network is defined are straightforward, not fuzzy.
 - The correlation between the presence and size of the regional N2Ss and land take, if any, is clear-cut.

- Regional Natura 2000 network:
 - Sites of Community Interest (SCIs) were identified in 2000 and established in 2006.
 - Special Protection Areas (SPAs) were established in three steps between 2000 and 2007.
 - As of 2007: 92 SCIs and 37 SPAs.
 - The spatial distribution and conservation status of habitats and species are monitored (under reporting obligations art. 17 of the Directive) and mapped.
2. NATURA 2000 IN SARDINIA

Habitats of community interest, group 9 “Forests”

Habitats of community interest, group 2 “Coastal sand dunes and inland dunes”
3. DEFINITION OF A LAND-TAKE RELATED VARIABLE

- **Land take** is the “Change of the amount of agriculture, forest and other semi-natural and natural land taken by urban and other artificial land development” (European Environment Agency, 2013).

- The **Corine Land Cover classification** is quite handy to assess land take, because it classes land cover according to 5 main groups:
 1. artificial land
 2. agricultural areas
 3. forests and semi-natural areas
 4. wetlands
 5. waterbodies.

 So land take occurs when a land parcel has a non-artificial status in a given time and an artificial one in a next one.

- To study land take between 1990 and 2008, we put together data from two sources:
 1. the 1990 Urban Morphologic Zones map of the EEA
 2. the 2008 Regional Corine Land Cover (the 1990 map was preprocessed because of inconsistencies in resolution).

- In Sardinia, land take between 1990 and 2008 amounted to $\approx 3.2\%$.
4. POTENTIAL DETERMINANTS OF LAND TAKE

NAT_2000:
N2Ss areas. Sites aim at maintaining and restoring natural habitats in a favorable conservation status.

Maintenance and improvement in distribution, structure and functions of habitats and species are looked for.

We expect that land take should be minimized in Natura 2000 sites.

The presence and size of N2Ss is expected to be negatively correlated to land taking processes.

“rebound effect” argument (after Dewi et al. 2013)

If land take is forbidden, land take may shift to areas close to the protected parcel.

LT_N2K:
Quantity of land uptaken within the N2Ss in a given municipality.

LT_9008 puts in evidence if and to what extent AAs have been effective in preventing negative impacts of the implementation of planning policies on N2Ss.

We expect that the higher the land take size, the higher the land uptaken from N2Ss within a municipality.
4. POTENTIAL DETERMINANTS OF LAND TAKE

DENS1990: Municipal residential density in 1990.

In the literature, residential density is usually positively correlated to land take.

INC_2008: Municipal per-capita income in 2008.

Could be negatively correlated to land take e.g. because a comparatively high municipal per-capita income pushes up investments in agriculture...

... or could be positively correlated to land take e.g. if investments spur new building developments.

AUTOCORR: Spatially-lagged variable.

*Everything is related to everything else, but near things are more related than distant things.***

(Tobler’s 1st law of geography)
4. POTENTIAL DETERMINANTS OF LAND TAKE

CS_N2K: municipal land area included in the coastal strip which is part of a N2S as well.

Under the provisions of the RLP, changes in land cover in the coastal strip are almost totally prevented.

Land take is forbidden whether the area is part of a N2S or not. The impact of this variable is expected to be negative.

OLPL_N2K: Municipal land area classed in planning code in force before 2006 as “1”, “2a”, “2b” types.

Land transformations and new developments were prevented in these areas.

Land take is forbidden whether the area is part of a N2S or not. The impact of this variable is expected to be negative.

WAT_2K: total municipal area classed as “Wetlands” or “Water bodies” in the land-use map and included in the Natura 2000 network.

This variable is almost invariant between 1990 and 2008.

The impact of this variable is expected to be negative.

SLOP: Municipality’s weighted average slope of areas included in the Natura 2000 network (weight = Natura 2000 area within that municipality).

This variable contributes to the stability of a N2S in terms of land take.

The impact of this variable is expected to be negative.
4. POTENTIAL DETERMINANTS OF LAND TAKE

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
<th>Source(s)</th>
<th>u.m.</th>
<th>Mean</th>
<th>St.dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LT_9008</td>
<td>Ratio of the total municipal area whose land cover changed from non-urbanized to urbanized between 1990 and 2008 to the municipal land area</td>
<td>CLC90 CLCMS08</td>
<td>%</td>
<td>1.86</td>
<td>2.45</td>
</tr>
<tr>
<td>NAT_2000</td>
<td>Ratio of the total municipal land area belonging to the Natura 2000 network in 2008 to the municipal land area</td>
<td>SDRGISS</td>
<td>%</td>
<td>31.16</td>
<td>24.65</td>
</tr>
<tr>
<td>LT_N2K</td>
<td>Total municipal area whose land cover changed from non-urbanized to urbanized between 1990 and 2008 within the Natura 2000 network</td>
<td>CLC90 CLCMS08 SDRGISS</td>
<td>ha</td>
<td>20.40</td>
<td>35.07</td>
</tr>
<tr>
<td>CS_N2K</td>
<td>Municipal land area classed as Natura 2000 and included in the coastal strip</td>
<td>SDRGISS RLP spatial dataset</td>
<td>ha</td>
<td>690.23</td>
<td>1785.09</td>
</tr>
<tr>
<td>OLPL_N2K</td>
<td>Municipal land area classed in planning code in force before 2006 as areas where land transformations and new developments were almost totally forbidden</td>
<td>SDRGISS</td>
<td>ha</td>
<td>1,357.25</td>
<td>2,558.73</td>
</tr>
<tr>
<td>WAT_N2K</td>
<td>Total municipal area classed as 4 “Wetlands” or 5 “Water bodies” in the 2008 regional land-use map and included in the Natura 2000 network</td>
<td>SDRGISS</td>
<td>ha</td>
<td>114.83</td>
<td>388.38</td>
</tr>
<tr>
<td>SLOP</td>
<td>Municipality's weighted average slope of areas included in the Natura 2000 network weight = area of the share of the municipality designated as Natura 2000 site(s)</td>
<td>SDRGISS</td>
<td>%</td>
<td>18.85</td>
<td>13.30</td>
</tr>
<tr>
<td>DENS1990</td>
<td>Municipal residential density in 1990</td>
<td>ISTAT</td>
<td>res./ km²</td>
<td>77.85</td>
<td>194.62</td>
</tr>
<tr>
<td>INC_2008</td>
<td>Municipal per-capita income in 2008</td>
<td>Italian Ministry of Economy & Finance</td>
<td>€</td>
<td>7,442.91</td>
<td>1,727.64</td>
</tr>
<tr>
<td>AUTOCORR</td>
<td>Municipal spatially lagged dependent variable 1990-2008</td>
<td></td>
<td>%</td>
<td>1.67</td>
<td>1.16</td>
</tr>
</tbody>
</table>

Source Notes:
- **CLC90**: CORINE Land Cover 1990 EEA map
- **CLCMS08**: regional CORINE Land Cover Map of 2008
- **SDRGISS**: Spatial Dataset of the Regional Geographic Information System of Sardinia
- **RLP**: Regional landscape plan of Sardinia
4. MAPPING POTENTIAL DRIVERS OF LAND TAKE
5. RESULTS OF THE OSL MODEL (DEP. VARIABLE LT_9008)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Stand.error</th>
<th>t-statistic</th>
<th>Hypothesis test: coefficient=0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>-0.1040</td>
<td>0.8137</td>
<td>-0.128</td>
<td>0.8985</td>
</tr>
<tr>
<td>NAT_2000</td>
<td>-0.0130</td>
<td>0.0066</td>
<td>-1.990</td>
<td>0.0484</td>
</tr>
<tr>
<td>LT_N2K</td>
<td>0.0188</td>
<td>0.0050</td>
<td>3.774</td>
<td>0.0002</td>
</tr>
<tr>
<td>CS_N2K</td>
<td>6.52E-06</td>
<td>0.0001</td>
<td>0.056</td>
<td>0.9551</td>
</tr>
<tr>
<td>OLPL_N2K</td>
<td>-6.46E-05</td>
<td>8.74E-05</td>
<td>-0.740</td>
<td>0.4607</td>
</tr>
<tr>
<td>WAT_N2K</td>
<td>-0.0022</td>
<td>0.0005</td>
<td>-4.232</td>
<td>0.0000</td>
</tr>
<tr>
<td>SLOP</td>
<td>-0.0264</td>
<td>0.0121</td>
<td>-2.191</td>
<td>0.0300</td>
</tr>
<tr>
<td>DENS1990</td>
<td>0.0034</td>
<td>0.0012</td>
<td>2.890</td>
<td>0.0044</td>
</tr>
<tr>
<td>INC_2008</td>
<td>0.0002</td>
<td>0.0001</td>
<td>1.567</td>
<td>0.1192</td>
</tr>
<tr>
<td>AUTOCORR</td>
<td>0.8224</td>
<td>0.1698</td>
<td>4.843</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

*Signs as expected
*All variables significant (98.8%) but two
*The impact of N2Ss-based environmental protection on land take is not related to other conservative planning rules

Adjusted R-squared = 0.5441
6. DISCUSSION AND CONCLUSIONS

- **NAT_2000 (c. -0.0130)**
 - The presence and size of N2Ss prevent land take
 - In the surroundings of N2Ss possible rebound effects are quite weaker than the conservative effect, if any
 - On average, if the municipal area belonging to N2Ss triples, the municipal land uptaken will decrease by 2.6%

- **LT_N2K (c. +0.0188)**
 - If the municipal area uptaken within N2Ss doubles (=LT_N2K increases of about 21 ha), municipal non-artificial area decreases by 0.4%

- **WAT_N2K (c. -0.0022)**
 - On average, if wetlands in N2Ss tripled (=WAT_N2K increases by about 250 ha), the land uptaken would decrease by less than 0.1%

- **SLOP (c. -0.0264)**
 - The marginal effect of SLOP is slightly greater than that of LT_N2K

- **DENS1990 (c. 0.0034)**
 - Higher demand for areas for residential development increases land take (agglomeration effect)
 - The more the quantity of land that is “taken”, the greater the municipal residential density
 - Land-taking processes are positively related to intensive urbanization rather than to extensive urbanization
 - On average, a 10-residents-per-hectare increase in residential density is related to a 3.4% increase of land uptaken

- **INC_2008 (c. 0.0002)**
 - Wealthier residents mean higher land take (income effect)
 - More affluent communities show a comparatively higher demand for new developments (housing, services and infrastructure, etc)
 - On average, a 5,000 € increase in per-capita income would imply a 1% increase in land take (quite a weak income effect)
With reference to establishment and management of N2Ss, **3 main implications** on the relationship between land-taking processes and environmental protection policies:

1. **Robust negative influence of N2Ss on land take:**
 - The presence and size of N2Ss is correlated to a decrease in land take.
 - The reduction in land take as a consequence of N2Ss is significant in quantitative terms.

2. **No evidence of the “rebound” effect** (*Dewi* et al., 2013) in the close surroundings of N2Ss:
 - Land saving spreads over the whole municipal land area as a consequence of the presence and size of the municipal N2Ss.
 - This finding is to be linked to the mandatory character of the A.A. procedure.
 - A.A. has to be applied even outside N2Ss boundaries, if plans and projects could impact on habitats and species within N2Ss.

3. **No need for further restrictive planning rules in order to limit land take:**
 - N2Ss do not impose, in principle, any ban on specific land uses or developments.
 - Rather, it must be proved that project or planning proposals will not damage or generate loss of habitats and/or species.
 - This, according to the outcomes of our analysis, significantly reduces land-taking processes.
6. DISCUSSION AND CONCLUSIONS

- What if the size of N2Ss increased in each municipality? (by 10 percentiles in the distribution of NAT_2000)

- For each local authority, the magnitude of the effect on LT_9008 is calculated.
 - Left: values of the simulated LT_9008
 - Right: difference between actual and simulated values of LT_9008

- An increase by ten percentiles in the share of municipal land included in N2Ss brings about a decrease in land take ranging from -0.03875% to -0.2763%.

C. Zoppi, S. Lai - The influence of Natura 2000 sites on land-taking processes at the regional level: An empirical analysis concerning Sardinia (Italy)
The influence of Natura 2000 sites on land-taking processes at the regional level.
An empirical analysis concerning Sardinia (Italy)