Ricerca

 

it

E’ coordinatore della Divisione Biometria del Pattern Recognition and Applications Laboratory (PRA Lab) diretto dal Prof. Fabio Roli. L’attività di ricerca è incentrata sulle tecnologie biometriche per la sicurezza informatica. In particolare si occupa di classificazione e verifica di impronte digitali e volti, rilevazione di contraffazioni e sistemi multimodali. Ha al suo attivo oltre ottanta pubblicazioni fra riviste, atti di conferenze e congressi, capitoli di libro, tutte di impatto internazionale.

E’ revisore di progetti, riviste e conferenze internazionali.

E’ team leader e responsabile di progetti di ricerca internazionali pubblici (FP-European Union) e privati (Crossmatch) nonché progetti nazionali (PRIN, RAS) e locali (“Giovani Ricercatori”) e di collaborazione con il RaCIS di Cagliari.

L’elenco completo delle sue pubblicazioni, delle tesi di laurea e dottorato delle quali è stato co-relatore è nel suo curriculum_vitae e nella pagina personale del sito PRA Lab.

en

He is team leader of the Biometric Unit of the Pattern Recognition and Applications Laboratory (PRA Lab) leaded by Prof. Fabio Roli. His research activity is focused on the biometric Technologies for information security. In particular, identification, verification and vulnerability analysis of fingerprint and face, multi-modal biometric systems. He has co-authored more than one hundred of publications in journal, conference proceedings and books chapters. He also co-authored the voice “Antispoofing: Multimodal” in the last edition of Encyclopedia of Biometrics.

He acts as referee for international projects, journals and conferences.

He is in charge of national and international research projects.

The complete publication list and activities is in his curriculum_vitae and in his personal webpage in the PRA Lab website.

Titolo: Comparison of adaptive appearance methods for tracking faces in video surveillance
Autori: 
Data di pubblicazione: 2013
Abstract: ace recognition is increasingly employed by public safety organizations in decision support systems for video surveillance, to detect the presence of individuals of interest. In the context of spatiotemporal face recognition, tracking is an important function used to locate, follow and regroup faces of different individuals in a scene. Techniques for face tracking in video surveillance should be robust to changes in pose, expression and illumination, as well as occlusion in cluttered scenes. Given these challenges, trackers based on adaptive appearance modelling (AAM) typically improve target's state estimation because they initiate and update an internal face model per individual according to changes in facial appearance. In this paper, the performance of three AAM trackers - Incremental Visual Tracking (IVT), Tracking Learning Detection (TLD) and Discriminative Sparse Coding based Tracking (DSCT) - are compared for face tracking with video surveillance applications in mind. These methods are evaluated according to area overlap error, tracking error and time complexity using Chokepoint videos collected in uncontrolled video-surveillance environments, where individuals walk through portals. Results indicate that IVT outperforms the others in its ability to accurately track faces in the presence of occlusion, and under variations in pose, scale and lighting. Further characterization of IVT indicates that using a small batch size and forgetting factor during update provide better tracking accuracy when face tracks changes in their capture conditions. When conditions change more gradually, IVT benefits from assessing facial quality before updating face models.
Handle: http://hdl.handle.net/11584/107421
ISBN: 9781849199049
Tipologia:4.1 Contributo in Atti di convegno

File in questo prodotto:
Non ci sono file associati a questo prodotto.
credits unica.it | accessibilità Università degli Studi di Cagliari
C.F.: 80019600925 - P.I.: 00443370929
note legali | privacy

Nascondi la toolbar