Ricerca

 

it

E’ coordinatore della Divisione Biometria del Pattern Recognition and Applications Laboratory (PRA Lab) diretto dal Prof. Fabio Roli. L’attività di ricerca è incentrata sulle tecnologie biometriche per la sicurezza informatica. In particolare si occupa di classificazione e verifica di impronte digitali e volti, rilevazione di contraffazioni e sistemi multimodali. Ha al suo attivo oltre ottanta pubblicazioni fra riviste, atti di conferenze e congressi, capitoli di libro, tutte di impatto internazionale.

E’ revisore di progetti, riviste e conferenze internazionali.

E’ team leader e responsabile di progetti di ricerca internazionali pubblici (FP-European Union) e privati (Crossmatch) nonché progetti nazionali (PRIN, RAS) e locali (“Giovani Ricercatori”) e di collaborazione con il RaCIS di Cagliari.

L’elenco completo delle sue pubblicazioni, delle tesi di laurea e dottorato delle quali è stato co-relatore è nel suo curriculum_vitae e nella pagina personale del sito PRA Lab.

en

He is team leader of the Biometric Unit of the Pattern Recognition and Applications Laboratory (PRA Lab) leaded by Prof. Fabio Roli. His research activity is focused on the biometric Technologies for information security. In particular, identification, verification and vulnerability analysis of fingerprint and face, multi-modal biometric systems. He has co-authored more than one hundred of publications in journal, conference proceedings and books chapters. He also co-authored the voice “Antispoofing: Multimodal” in the last edition of Encyclopedia of Biometrics.

He acts as referee for international projects, journals and conferences.

He is in charge of national and international research projects.

The complete publication list and activities is in his curriculum_vitae and in his personal webpage in the PRA Lab website.

Titolo: Biometric system adaptation by self-update and graph-based techniques
Autori: 
Data di pubblicazione: 2013
Rivista: 
JOURNAL OF VISUAL LANGUAGES AND COMPUTING  
Abstract: Self-update is the most commonly adopted biometric template update technique in which the system adapts itself to the confidently classified samples. However, the recent works indicate that self-update has limited capability to capture samples representing significant intra-class variations. As an alternative, a biometric template update technique based on the graph-based representation is proposed. This technique can potentially capture samples with significant variations, resulting in efficient adaptation. Until now, the efficacy of these adaptation techniques has been proven only on the basis of experimental evaluations on small data sets. The contribution of this paper lies in (a) conceptual explanation of the functioning of self-update and graph-based techniques to template adaptation leading to efficacy of the latter and (b) evaluation of the performance of these adaptation techniques in comparison to the baseline system without adaptation. Experiments are conducted on the large DIEE data set, explicitly collected for this aim. Reported results validate the superiority of the graph-based technique over self-update.
Handle: http://hdl.handle.net/11584/103692
Tipologia:1.1 Articolo in rivista

File in questo prodotto:
Non ci sono file associati a questo prodotto.
credits unica.it | accessibilità Università degli Studi di Cagliari
C.F.: 80019600925 - P.I.: 00443370929
note legali | privacy

Nascondi la toolbar