Describing Function analysis of nonlinear systems

Prof. Elio USAI
eusai@diee.unica.it

University of Leicester
Department of Engineering
System definition and problem statement

- **r**: reference variable
- **e**: error signal
- **u**: control variable
- **m**: manipulated input
- **y**: controlled variable
- **ym**: measure of the output
- **z**: feedback signal
- **d**: disturbance
- **n**: measurement noise

Controller

Plant
System definition and problem statement

In many cases the system presents a nonlinear phenomenon which is fully characterised by its static characteristics, i.e., its dynamics can be neglected.

- Saturated actuators
- Relay control
- Gears backlash
- Hysteresis in magnetic materials
- Dead zone in electro-mechanical systems
In many cases the system presents a nonlinear phenomenon which is fully characterised by its static characteristics, i.e., its dynamics can be neglected.

- Saturated actuators
- Relay control
- Gears backlash
- Hysteresis in magnetic materials
- Dead zone in electro-mechanical systems
In many cases the system presents a nonlinear phenomenon which is fully characterised by its static characteristics, i.e., its dynamics can be neglected.

- Saturated actuators
- Relay control
- Gears backlash
- Hysteresis in magnetic materials
- Dead zone in electro-mechanical systems
System definition and problem statement

In many cases the system presents a nonlinear phenomenon which is fully characterised by its static characteristics, i.e., its dynamics can be neglected.

- Saturated actuators
- Relay control
- Gears backlash
- Hysteresis in magnetic materials
- Dead zone in electro-mechanical systems
In many cases the system presents a nonlinear phenomenon which is fully characterised by its static characteristics, i.e., its dynamics can be neglected.

- Saturated actuators
- Relay control
- Gears backlash
- Hysteresis in magnetic materials
- Dead zone in electro-mechanical systems
System definition and problem statement

Nonlinearities are not always a drawback, they can also have a “stabilising” effect.

\[
P(s) = \frac{1}{s(1+1.4s + s^2)}
\]

\[
H(s) = \frac{0.5}{(1+0.1s)}
\]

\[
C(s) = 10
\]

\[
A(s) = \cdots 1
\]

\[
\text{sat}(\pm 2)
\]
System definition and problem statement

Step response

The saturated system oscillates but does not diverge.
The NOT saturated system is not stable since its stability margin are negatives:

- $m_g = -12 \text{ dB}$
- $m_\phi = -47 \text{ deg}$
System definition and problem statement

Many systems can be reduced to a simplified form in which the all linear dynamics is concentrated in a unique block and the static non linear characteristics is represented by a separate block.
System definition and problem statement

If constant (or very slowly varying) reference signals are considered, under some conditions it is possible to separate the low-frequency, almost static, behaviour defined by a working nominal condition and a high-frequency behaviour due to small variations around such a working point.

\[u(t) = u_0 + \Delta u(t) \]
\[m(t) = m_0 + \Delta m(t) \]
\[w(t) = w_0 + \Delta w(t) \]
\[u_0 = k_C R - k_G m_0 \]
System definition and problem statement

The non-linear characteristics is translated so that the origin of the new reference Cartesian system is the point \((u_0, m_0)\) in the original one.

\[
\begin{align*}
\Delta m &= f'(\Delta u) \\
\Delta m_0 &= f'(\Delta u) \\
\end{align*}
\]

\[
\begin{align*}
m_0 &= f(u_0) \\
u_0 &= k_C R - k_G m_0 \\
\Delta m_0 &= f'(\Delta u) \\
f'(\Delta u) &= f(u_0 + \Delta u) - m_0
\end{align*}
\]
System definition and problem statement

The aim of the system analysis is to define which is the steady-state behaviour of the system defined by the variations around the nominal working point:

\[\Delta r'(t) = 0 + \Delta u(t) \rightarrow f'(u) \rightarrow \Delta m(t) \rightarrow G(j\omega) \rightarrow \Delta w(t) \]

If \(f'(u) \) is a passive sector function, absolute stability tools allow for sufficient conditions for global asymptotic stability of the variation system, i.e., the steady state is characterised by constant values of the system variables.

If the origin of the variation system is not stable, does the variables diverge to infinity or some periodic motion can appear?
Limit cycles

Limit cycle: a periodic oscillation around a constant working point

\[r' = 5 \delta_{-1}(\tau) + u(t) \]

\[f(u) \quad m(t) \quad G(j\omega) \quad w(t) \]

\[G(s) = \frac{10}{(s + 1)(s^2 + 1.4s + 1)} \]

\[f(u) = \text{sat}(1, -\frac{6}{11}, \frac{16}{11}) \]

\[m = -\frac{1}{10} u + \frac{1}{2} \]

\[u_0 = \frac{5}{11} \]

\[m_0 = \frac{5}{11} \]
Limit cycles

Limit cycle: a periodic oscillation around a constant working point

\[\Delta r'(t) = 0 + \Delta u(t) \rightarrow f'(u) \rightarrow \Delta m(t) \rightarrow G(j\omega) \rightarrow \Delta w(t) \]

\[u_0 = \frac{5}{11} \]
\[m_0 = \frac{5}{11} \]

\[w_0 = \frac{50}{11} = 4.545 \]
Limit cycles

Limit cycle can be a drawback in control systems:

- Instability of the equilibrium point
- Wear and failure in mechanical systems
- Loss of accuracy in regulation

Parameters of the limit cycle can be used to discriminate between acceptable and dangerous oscillations

- Oscillation frequency
- Oscillation magnitude

Electronic oscillators can be based on limit cycles
Describing Function - Assumptions

The describing Function approach to the analysis of steady-state oscillations in non linear systems is an approximate tool to estimate the limit cycle parameters.

It is based on the following assumptions

- There is only one single nonlinear component
- The nonlinear component is not dynamical and time invariant
- The linear component has low-pass filter properties
- The nonlinear characteristic is symmetric with respect to the origin
Describing Function - Assumptions

There is only one single nonlinear component

The system can be represented by a lumped parameters system with two main blocks:

• The linear part
• The nonlinear part
Describing Function - Assumptions

The nonlinear component is not dynamical and time invariant.

The system is autonomous.
All the system dynamics is concentrated in the linear part so that classical analysis tools such as Nyquist and Bode plots can be applied.

\[m = M \frac{u}{|u| + \varepsilon} \]
Describing Function - Assumptions

The linear component has low-pass filter properties

This is the main assumption that allows for neglecting the higher frequency harmonics that can appear when a nonlinear system is driven by a harmonic signal

\[|G(j\omega)| \gg |G(jn\omega)| \quad n = 2, 3, \ldots \]

The more the low-pass filter assumption is verified the more the estimation error affecting the limit cycle parameters is small.
Describing Function - Assumptions

The nonlinear characteristic is symmetric with respect to the origin

This guarantees that the static term in the Fourier expansion of the output of the nonlinearity, subjected to an harmonic signal, can be neglected

Such an assumption is usually taken for the sake of simplicity, and it can be relaxed
Consider a periodic function

\[y(t) = f(t), \quad y(t) = y(t - T), \quad T \text{ is a real constant} \]

\[y(t) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left(a_k \sin\left(k \frac{2\pi}{T} t \right) + b_k \cos\left(k \frac{2\pi}{T} t \right) \right) \]

\[a_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \cos\left(k \frac{2\pi}{T} t \right) dt = \frac{1}{\pi} \int_{-\frac{\pi}{k}}^{\frac{\pi}{k}} f(t) \cos\left(k \frac{2\pi}{T} t \right) dt \]

\[b_k = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) \sin\left(k \frac{2\pi}{T} t \right) dt = \frac{1}{\pi} \int_{-\frac{\pi}{k}}^{\frac{\pi}{k}} f(t) \sin\left(k \frac{2\pi}{T} t \right) dt \]

\[k = 0, 1, 2, \ldots \quad b_0 = 0 \]
Describing Function – Harmonic balance

\[\Delta r'(t) = 0 + \Delta u(t) \]

\[f'(u) \]

\[\Delta m(t) \]

\[G(j\omega) \]

\[\Delta w(t) \]

\[\Delta u(t) = U \sin(\bar{\omega}t) \]

\[\Delta m(t) = \sum_{k=1}^{\infty} \left(a_k \cos(k\bar{\omega}t) + b_k \sin(k\bar{\omega}t) \right) \]

\[\Delta w(t) = \sum_{k=1}^{\infty} G_k \left(a_k \cos(k\bar{\omega}t + \phi_k) + b_k \sin(k\bar{\omega}t + \phi_k) \right) \]

\[G_k = |G(jk\bar{\omega})| \]

\[\phi_k = \angle G(jk\bar{\omega}) \]
Describing Function – *Harmonic balance*

Consider the polar representation of a complex number associated with the exponential form of harmonic signals

\[
\Delta u(t) = U e^{j\varphi t}
\]

\[
m(t) = \sum_{k=1}^{\infty} M_k e^{j\varphi_k} e^{jk\varphi t}
\]

\[
M_k = \sqrt{a_k^2 + b_k^2}
\]

\[
\varphi_k = \arctan \frac{a_k}{b_k}
\]

Taking into account the low-pass property of the linear part of the system

\[
\Delta w(t) = \sum_{k=1}^{\infty} G_k e^{j\varphi_k} M_k e^{j\varphi_k} e^{jk\varphi t} \approx G_1 e^{j\varphi_1} M_1 e^{j\varphi_1} e^{j\varphi t}
\]
A permanent oscillation in the loop appears if $\Delta u(t) = -\Delta w(t)$

$$U e^{j\bar{\omega}t} = -G_1 e^{j\phi_1} M_1 e^{j\delta_1} e^{j\bar{\omega}t} \quad \Rightarrow \quad 1 + G_1 e^{j\phi_1} \frac{M_1}{U} e^{j\delta_1} = 0$$

Harmonic balance equation

$$1 + G(j\omega)N(U, \omega) = 0$$

$$N(U, \omega) = \frac{1}{U} (b_1 + ja_1)$$ is the **Describing Function** of the nonlinear term
Describing Function – *Harmonic balance*

The harmonic balance equation is a **necessary condition** for the existence of limit cycles in the nonlinear system.

The **approximate** analysis gives good estimates if the low-pass filter hypothesis is strongly verified. It is a good tool for engineers.

The harmonic balance equation is similar to the characteristic polynomial function, i.e., it leads to the Nyquist condition for closed-loop stability.

The Describing Function is a linear approximation of the static nonlinearity limited to the first harmonic.

In most cases the Describing Function is not a function of the frequency and this simplifies the verification of the harmonic balance equation by means of the Nyquist plot of the transfer function:

\[
G(j\omega) = -\frac{1}{N(U, \omega)}
\]
Describing Function analysis of nonlinear systems – Prof Elio USAI – March 2008

Describing Function – *Harmonic balance*

Nyquist Diagram

- $\omega = 0^+$
- $+\infty \leftarrow U$
- (U_0, ω_0)
- $G(j\omega)$
- $\omega = +\infty$
- $-1/N(U)$

$G(j\omega)$

$U = 0$
Describing Function analysis of nonlinear systems – Prof Elio USAI – March 2008

Nyquist and DF Diagrams

System: sys
Real: -1.14
Imag: -2.02
Freq (rad/sec): 0.651

System: sys
Real: -2.01
Imag: -0.021
Freq (rad/sec): 0.997

System: sys
Real: -1.14
Imag: -2.02
Freq (rad/sec): 0.651

ω = 100
ω = 17.7828
ω = 3.1623
ω = 0.56234
ω = 0.1

Describing Function – Harmonic balance
Describing Function – Computation

The DF computation can be performed by means of its definition

\[f'(u) \]

\[\text{Usin}(\omega t) \quad \rightarrow \quad f'(u) \quad \rightarrow \quad \Delta m(t) \]

\[N(U, \omega) = \frac{1}{U} (b_1 + ja_1) \]

\[a_1 = \frac{2}{T} \int_{-T/2}^{T/2} \Delta m(t) \cos(\omega t) dt \]

\[b_1 = \frac{2}{T} \int_{-T/2}^{T/2} \Delta m(t) \sin(\omega t) dt \]

The evaluation of coefficients \(a_1 \) and \(b_1 \) can be performed by means of both analytical calculation and numerical integration, depending on the type of nonlinearity involved.
Describing Function – Computation

Ideal relay

\[a_1 = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \Delta m(t) \cos(\omega t) dt = 0 \]

Because of the odd symmetry of the \(\Delta m(t) \) signal

\[b_1 = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \Delta m(t) \sin(\omega t) dt = \frac{4}{\pi} M \int_0^{\frac{\pi}{2}} \sin(\theta) d\theta = \frac{4M}{2\pi} \]

\[N(U, \omega) = \frac{4M}{U\pi} \]
Describing Function – *Computation*

Ideal relay

The negative reciprocal of the DF is the negative real axis in backward direction.

A limit cycle can exist if the relative degree of $G(j\omega)$ is greater than two.

The oscillation frequency is the critical frequency ω_c of the linear system and the oscillation magnitude is proportional to the relay gain M.

Describing Function analysis of nonlinear systems – *Prof Elio USAI* – March 2008
Describing Function analysis of nonlinear systems – Prof Elio USAI – March 2008

Describing Function – Computation

Pure hysteresis

\[b_1 = \frac{2}{T} \int_{-T/2}^{T/2} \Delta m(t) \cos(\omega t) \, dt = 0 \]

Because of the even symmetry of the \(\Delta m(t) \) signal

\[a_1 = \frac{2}{T} \int_{-T/2}^{T/2} \Delta m(t) \cos(\omega t) \, dt = -\frac{2}{\pi} \int_0^{\pi/2} M \cos(\theta) \, d\theta = -\frac{4M}{\pi} \]

\[N(U, \omega) = -j \frac{4M}{U\pi} \]
Pure hysteresis

The negative reciprocal of the DF is the negative imaginary axis in backward direction.

A limit cycle can exist if the relative degree of $G(j\omega)$ is greater than one and $G(j\omega)$ is a type-0 system.

The oscillation frequency is lower than the critical frequency ω_c of the linear system and the oscillation’s magnitude is proportional to the relay gain M and to the modulus of the transfer function at phase $-\pi/4$.
Hysteretic relay

If $U \leq \beta$ the hysteretic relay behaves as pure hysteresis

$$b_1 = -M \frac{8}{T} \int_0^{t_r} \sin(\omega t) dt + M \frac{8}{T} \int_{t_r}^{\gamma T} \sin(\omega t) dt = \frac{4M}{\pi} \sqrt{1 - \left(\frac{\beta}{U} \right)^2}$$

$$a_1 = -M \frac{8}{T} \int_0^{t_r} \cos(\omega t) dt + M \frac{8}{T} \int_{t_r}^{\gamma T} \cos(\omega t) dt =$$

$$N(U, \omega) = \begin{cases}
-j \frac{4M}{U \pi} & U \leq \beta \\
4M \left[\frac{1 - \left(\frac{\beta}{U} \right)^2}{\pi U} \right] - j \frac{4M \beta}{\pi U^2} & U > \beta
\end{cases}$$

The imaginary part of $N(U)$ is proportional to the hysteresis area
Hysteretic relay

The negative reciprocal of the DF is the parallel to the negative real axis and with constant negative imaginary part.

If β is larger than U the relay could not behave as a pure hysteresis.

The oscillation frequency is lower than the critical frequency ω_c of the linear system and the oscillation’s magnitude is proportional to the relay gain M.
Describing Function – Computation

Saturation

If $U \leq M$ the saturation behaves as pure gain

\[
a_1 = \frac{2}{T} \int_{-T/2}^{T/2} \Delta m(t) \cos(\omega t) dt = 0
\]

Because of the odd symmetry of the $\Delta m(t)$ signal

\[
b_1 = \frac{8}{T} \int_0^{T/2} kU \sin^2(\omega t) dt + M \frac{8}{T} \int_{T/2}^{T} \sin(\omega t) dt = \frac{2kU}{\pi} \left[\arcsin \left(\frac{M}{kU} \right) + \left(\frac{M}{kU} \right) \sqrt{1 - \left(\frac{M}{kU} \right)^2} \right]
\]

\[
N(U) = \begin{cases}
 k & U \leq \frac{M}{k} \\
 \frac{2k}{\pi} \left[\arcsin \left(\frac{M}{kU} \right) + \left(\frac{M}{kU} \right) \sqrt{1 - \left(\frac{M}{kU} \right)^2} \right] & U > \frac{M}{k}
\end{cases}
\]
Describing Function analysis of nonlinear systems – Prof Elio USAI – March 2008

Saturation

The negative reciprocal of the DF is part of the negative real axis in backward direction.

A limit cycle can exist if the relative degree of $G(j\omega)$ is greater than two and gain k is sufficiently high.

The oscillation frequency is the critical frequency ω_c of the linear system and the oscillation’s magnitude depends on the saturation parameters M and k.
Describing Function analysis of nonlinear systems

Prof Elio USAI

March 2008

Describing Function – Computation

Dead zone

If \(U \leq \beta \) the dead zone has no output

\[
a_1 = \frac{2}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} \Delta m(t) \cos(\omega t) dt = 0
\]

Because of the odd symmetry of the \(\Delta m(t) \) signal

\[
b_1 = \frac{8}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} k(U \sin(\omega t) - \beta) \sin(\omega t) dt = \frac{2kU}{\pi} \left[\frac{\pi}{2} - \arcsin\left(\frac{\beta}{U} \right) - \left(\frac{\beta}{U} \right) \sqrt{1 - \left(\frac{\beta}{U} \right)^2} \right]
\]

\[\beta = U \sin(\omega t)\]

\[
N(U) = \begin{cases}
0 & U \leq \beta \\
\frac{k - 2k}{\pi} \left[\arcsin\left(\frac{\beta}{U} \right) + \left(\frac{\beta}{U} \right) \sqrt{1 - \left(\frac{\beta}{U} \right)^2} \right] & U > \beta
\end{cases}
\]
Describing Function – Computation

Dead zone

The negative reciprocal of the DF is part of the negative real axis in forward direction

A limit cycle can exist if the relative degree of $G(j\omega)$ is greater than two and gain k is sufficiently high

The oscillation frequency is the critical frequency ω_c of the linear system and the oscillation magnitude depends on the dead zone parameters β and k
Describing Function – Computation

Dead zone

The nonlinear characteristics of the Dead Zone can be computed by subtracting the Saturation characteristics from a linear one.

\[\Psi(\Delta u) = k - \Phi(\Delta u) \]

\[N_\Psi(U) = k - N_\Phi(U) \]
Describing Function – Computation

The Describing function of a nonlinear characteristics can be computed as the combination of the Describing Functions of the elementary constituting nonlinear characteristics

\[N_t(U, \omega) = N_1(U) + N_2(U) \]
Describing Function – Computation

A number of Describing Function can be computed by particularisation of the function

\[\Phi(\alpha) = \frac{2}{\pi} \left[\arcsin(\alpha) + \alpha \sqrt{1 - \alpha^2} \right] \]

in which the parameter \(\alpha \) defines a peculiar point of the nonlinear characteristics

\[N(\alpha) = \begin{cases}
 k & \alpha \geq 1 \\
 k \cdot \Phi(\alpha) & \alpha < 1
\end{cases} \]
Describing Function – Computation

\[N(\alpha) = \begin{cases}
 k_1 & \alpha \geq 1 \\
 k_2 + (k_1 - k_2) \cdot \Phi(\alpha) & \alpha < 1
\end{cases} \]

\[N(\alpha) = \begin{cases}
 0 & \alpha \geq 1 \\
 k(1 - \Phi(\alpha)) & \alpha < 1
\end{cases} \]
Describing Function – Computation

\[
N(\alpha) = \begin{cases}
0 & \alpha \geq 1 \\
 k \cdot (1 - \Phi(\alpha)) & \alpha < 1 \leq \beta \\
 k \cdot (\Phi(\beta) - \Phi(\alpha)) & \beta < 1
\end{cases}
\]

\[
N(\alpha) = k + \frac{4M}{\pi}
\]
Describing Function – *Computation*

\[
N(\alpha) = \frac{4M}{\pi}
\]

\[
N(\alpha) = \begin{cases}
0 & \alpha \geq 1 \\
\frac{4M}{\pi} \sqrt{1 - \alpha^2} & \alpha < 1
\end{cases}
\]
Describing Function – Computation

\[N(\alpha) = \begin{cases}
0 & \alpha \geq 1 \\
\frac{k}{2} [1 - \Phi(2\alpha - 1)] - j \frac{4k\alpha}{\pi} (1 - \alpha) & \alpha < 1
\end{cases} \]
Describing Function – Computation

\[N(U, \omega) = \begin{cases}
0 & \alpha \geq 1 \\
\frac{4M}{\pi U} \sqrt{1-\alpha^2} - j \frac{4M\alpha}{\pi U} & \alpha < 1
\end{cases} \]
Describing Function – Computation

\[N_1(U) = N_1(U) + N_1(U) \frac{1}{j\omega} \]

\[N(U, \omega) = \frac{4M}{\pi U} - j \frac{4M}{\pi U \omega} \]

\[\frac{-1}{N(U, \omega)} = -\frac{\pi U \omega}{4M(1 + \omega^2)}(\omega + j) \]
Stability of limit cycles

If the block $N.L.$ is a pure constant k, the stability of the feedback system can be performed by means of the Nyquist criterion, which gives the number of roots with positive real roots of the Harmonic Balance Equation

$$1 + \frac{G(j\omega)}{k} = 0$$

The Nyquist criterion looks at the relative position of the transfer function $G(j\omega)$ with respect to the point $(-1/k, 0)$ in the complex plain. By extension the criterion can be applied to any point $-\alpha$ of the complex plain with reference to the Harmonic Balance Equation

$$1 + G(j\omega)\alpha = 0, \quad \alpha \in \mathbb{C}$$
Stability of limit cycles

If the transfer function $G(j\omega)$ represents a stable system, the reduced Nyquist criterion can be applied, i.e. the closed loop stability can be stated if the reference point $-\alpha$ in the complex plain remains on the left-side when running along the Nyquist plot of $G(j\omega)$ from $\omega=0^+$ to $\omega=+\infty$.

$$G(j\omega) = \frac{1}{j\omega\left((j\omega)^2 + 0.5j\omega + 1\right)}$$

The closed loop is not stable with respect to the point $(-1/k,0)$.

The closed loop is stable with respect to the point $-\alpha$.
Stability of limit cycles

Can the generalization of the Nyquist criterion be used to analyse the stability of a limit cycle?

YES, it can

What does it mean that a limit cycle is stable?

If a perturbation of the magnitude of the periodic oscillation occurs, it tends to the original value as time passes.

How can a limit cycle be considered from the Nyquist criterion point of view?

It is a marginally stable condition.

How can the magnitude of a limit cycle be represented?

By a point in the Describing Function plot.
Points \(B, B', B'', A \) and \(A' \) represent possible magnitudes of the oscillation.

\(A \) and \(B \) represent two possible limit cycles.
Stability of limit cycles

Applying the reduced Nyquist criterion with respect to:

- point B': oscillations tend to decrease (stable system)
- point B'': oscillations tend to increase (unstable system)
- point A': oscillations tend to decrease (stable system)

B: Stable limit cycle A: Unstable limit cycle

The linear system $G(j\omega)$ is assumed to be stable in order to apply the reduced Nyquist criterion.
Consider a DC motor with permanent magnets

The position of the motor shaft is measured by means of a rotational variable resistance.

The voltage on the rotational resistance drives the position of a relay that switches the motor supply voltage between +/- 24 V d.c.
DF Analysis – Example of application

The linear approximate model of a DC motor is the following

\[v_r(t) = R_r i_r(t) + L_r \frac{di_r(t)}{dt} + e(t) \]

\[J \frac{d\omega(t)}{dt} = C_{em}(t) + B \omega(t) \]

\[\omega = \frac{d\vartheta(t)}{dt} \]

\[e(t) = k_e \omega(t) \]

\[C_{em}(t) = k_t i_r(t) \]

\[J = J_m + J_l \]

\[B = B_m + B_l \]

\[v_r(t) = \begin{cases} +24 & \vartheta < \vartheta_d \\ -24 & \vartheta \geq \vartheta_d \end{cases} \]

- \(R_r \): rotor resistance
- \(L_r \): rotor inductance
- \(k_e \): voltage feedback constant
- \(k_t \): torque constant
- \(J_m \): motor inertia
- \(J_l \): load inertia
- \(B_m \): motor friction coefficient
- \(B_l \): load friction coefficient
- \(v_r \): rotor supply voltage
- \(i_r \): rotor wound current
- \(C_{em} \): electromagnetic torque
- \(\omega \): rotational speed
- \(\vartheta \): shaft angular position
DF Analysis – Example of application

The motor transfer functions are the following

\[W_\omega(s) = \frac{\Omega(s)}{V_s(s)} = \frac{k_t}{(sL_a + R_a)(sJ + B) + k_t k_e} \]

\[W_\theta(j\omega) = \frac{\Theta(j\omega)}{V_r(j\omega)} = \frac{k_t}{j\omega((j\omega L_a + R_a)(j\omega J + B) + k_t k_e)} = \Re(j\omega) + j\Im(j\omega) \]

\[= -\frac{k_t(R_a J + L_a B)}{\omega^2(R_a J + L_a B)^2 + (R_a B + k_t k_e - \omega^2 L_a J)^2} \]

\[- j\omega \left[\frac{k_t(R_a B + k_t k_e - \omega^2 L_a J)}{\omega^2(R_a J + L_a B)^2 + (R_a B + k_t k_e - \omega^2 L_a J)^2} \right] \]
Describing Function analysis of nonlinear systems – Prof Elio USAI – March 2008

DF Analysis – Example of application

Taking into account the parameters of the motor and of the load

R=0.4; % rotor resistance
L=0.001; % rotor inductance
ke=0.3; % voltage feedback constant
kt=0.3; % torque constant
Jm=0.01; % motor inertia
Jl=0.09 % load inertia
Bm=0.05; % motor friction coefficient
Bl=0.05; % load friction coefficient
J=Jm+Jl;
B=Bm+Bl;
Describing Function analysis of nonlinear systems – Prof Elio USAI – March 2008

DF Analysis – Example of application

Taking into account the parameters of the motor and of the load

\[
R = 0.4; \quad \text{% rotor resistance} \\
L = 0.001; \quad \text{% rotor inductance} \\
ke = 0.3; \quad \text{% voltage feedback constant} \\
kt = 0.3; \quad \text{% torque constant} \\
Jm = 0.01; \quad \text{% motor inertia} \\
Jl = 0.09 \% \text{ load inertia} \\
Bm = 0.05; \quad \text{% motor friction coefficient} \\
Bl = 0.05; \quad \text{% load friction coefficient} \\
J = Jm + Jl; \\
B = Bm + Bl;
\]

\[
\omega\big|_{\omega'(j\omega)=0} = \omega_{cr} = \sqrt{\frac{R_s B + k_i k_e}{L_s J}} = 36.056 \text{ rad/s} \\
\overline{U} = -\frac{4M}{\pi} \cdot \Re(W_p(j\omega_{cr})) = 0.1759 \text{ rad}
\]
Describing Function analysis of nonlinear systems – Prof Elio USAI – March 2008

DF Analysis – Example of application

Taking into account the parameters of the motor and of the load

\[R = 0.4; \text{ % rotor resistance} \]
\[L = 0.001; \text{ % rotor inductance} \]
\[k_v = 0.3; \text{ % voltage feedback constant} \]
\[k_t = 0.3; \text{ % torque constant} \]
\[J_m = 0.01; \text{ % motor inertia} \]
\[J_l = 0.09 \text{ % load inertia} \]
\[B_m = 0.05; \text{ % motor friction coefficient} \]
\[B_l = 0.05; \text{ % load friction coefficient} \]
\[J = J_m + J_l; \]
\[B = B_m + B_l; \]

\[\omega |_{\Im (W_p(j\omega))=0} = \omega_{cr} = \sqrt{\frac{R_a B + k_i k_v}{L_a J}} = 36.056 \text{ rad/s} \]
\[\bar{U} = -\frac{4M}{\pi} \cdot \Re(W_p(j\omega_{cr})) = 0.1759 \text{ rad} \]
The system presents a periodic steady-state oscillation.
The system presents a periodic steady-state oscillation.
The system presents a periodic steady-state oscillation.
What does it happen if the same control law is applied to the speed control problem?

\[W_\omega(s) = \frac{k_t}{(sL_a + R_a)(sJ + B) + k_t k_e} \]

The linear plant is characterised by an all-pole transfer function with relative degree two, therefore there is no contact point between the Nyquist plot and the real negative axis, but the origin at \(\omega = +\infty \) (corresponding to \(U=0 \) in the DF plot)
The Nyquist plot of the linear system is **tangent** to the negative reciprocal of the DF at the origin, i.e., $U=0$ and $\omega=+\infty$.

Maybe a sliding mode behaviour is established asymptotically!?
Possibly a sort of dead-bit control, or finite time stabilisation seems to appear.

Can it be a sliding mode behaviour?
By reducing the integration step of the simulation it is apparent that the stabilisation is asymptotic.

Can it be a sliding mode behaviour?
By reducing the integration step of the simulation it is apparent that the stabilisation is asymptotic.

The rotor current tends to a constant value, i.e. an asymptotic (2^{nd} order) sliding sliding mode appears.
DF Analysis – Example of application

The DC motor is a second order system whose state variables are the rotor speed and current

\[
\begin{align*}
\frac{d\omega(t)}{dt} &= \frac{B}{J} \omega(t) + \frac{k_t}{J} i_r(t) \\
\frac{di_r(t)}{dt} &= -\frac{k_e}{L_r} \omega(t) - \frac{R_r}{L_r} i_r(t) + \frac{1}{L_r} v_r(t) \\
s(t) &= \frac{B}{J} \omega(t) + \frac{k_t}{J} i_r(t) + 2\omega(t) = \left[2 + \frac{B}{J} \right] \frac{k_t}{J} i_r(t) + \left[\frac{B}{J} + 2 \frac{B}{J} \right] \omega(t) + \left[0 \right] v_r(t)
\end{align*}
\]

The system transfer function has a zero in –2, and if the system output is steered to zero in a finite time, than the system behaves as a first order system with time constant \(\tau = 0.5 \)
DF Analysis – Example of application

A MATLAB-Simulink scheme is the following

Take care that because of the feedback, the new closed loop gain (assuming the rotor velocity as the output) will be 1/2
DF Analysis – Example of application

It is apparent that the shaft speed tends to the steady state value π as a first order system with $\tau = 0.5 \text{ s}$

Apart from a very short transient, the state trajectory tends to the steady-state values sliding on a linear manifold of the state space.
The Nyquist plot of the linear system cross the negative reciprocal of the DF at the origin, i.e., $U=0$ and $\omega=+\infty$.

A sliding mode behaviour is established in a finite time.
Sliding modes are characterised by infinite frequency of proper ideal switching devices

Most sliding mode controllers use a sign function in the controller, i.e., an ideal relay, which can be approximately represented by its Describing Function

By the example it is apparent that a sliding mode behaviour is established in a finite time if the Nyquist plot of cross the inverse negative of the describing function at the point \((U=0, \omega=+\infty)\)

It can also be derived that a sliding mode behaviour is established asymptotically if the Nyquist plot of is tangent to the inverse negative of the describing function at the point \((U=0, \omega=+\infty)\)

TAKE CARE: the Describing function is an approximate tool
Substitute the ideal relay with a hysteretic one with $\beta=1$

It is apparent that an ideal sliding mode cannot appear because of the switching delay
The limit cycle is apparent, with a period $T_{lc} \approx 0.6$ ms.

The magnitude is very small because of the low-pass filter property of the motor transfer function.
The Nyquist plot of the linear system has no common point with the negative inverse of the Describing Function of the hysteretic relay.

Describing function analysis can be useful in sliding mode systems when a common point is present.

Describing Function analysis of nonlinear systems – *Prof Elio USAI* – March 2008
Most effective use of the Describing Function approach to sliding modes….

Analysis of the characteristics of a chattering behaviour due to unmodelled dynamics of sensors and/or actuators

What is chattering? It appears as oscillations of the system variables, whose magnitude is related to the influence of the neglected dynamics on the system bandwidth

It is very close to a limit cycle
Consider the motor drive as a hysteretic switching device plus a time constant $\tau_a = 0.1$ s.
Nyquist plot parameters
\[\omega_{lc} = 662 \text{ rad/s} \]
\[U_{lm} = 1.1833 \text{ rad/s}^2 \]

\(U_{ls} \) represents the magnitude of the oscillation of the sliding variable

Describing Function analysis of nonlinear systems – Prof Elio USAI – March 2008
Nyquist plot parameters
\[\omega_{lc} = 662 \text{ rad/s} \]
\[U_{lm} = 1.1833 \text{ rad/s}^2 \]

Simulation results
\[T_{ls} = 9.7 \text{ ms} \]
\[\omega_{lc} = 646 \text{ rad/s} \]
\[U_{lm} = 1.8544 \text{ rad/s}^2 \]

Differences are due to:
- Numerical solution of the simulation
- Approximation of the DF approach
The rotor velocity tends to its steady-state value as a first order system with time constant $\tau=0.5 \text{s}$.

Rotor wound current presents large variations.

An approximate sliding mode is established.
DF Analysis & Sliding Modes

\[
\begin{bmatrix}
\dot{\omega} \\
i_r
\end{bmatrix} =
\begin{bmatrix}
\frac{B}{J} & \frac{k_t}{J} \\
-\frac{k_e}{L_r} & -\frac{R_r}{L_r}
\end{bmatrix}
\begin{bmatrix}
\omega \\
i_r
\end{bmatrix} +
\begin{bmatrix}
0 \\
\frac{1}{L_r}
\end{bmatrix}v_r
\]

Full system dynamics

\[
\sigma = 2 + \frac{B}{J} - \frac{k_t}{J}
\]

Internal reduced-order dynamics

\[
\dot{\omega} = -2\omega + s
\]

Input-output dynamics

\[
\dot{\sigma} = \left(2 + \frac{B}{J} - \frac{R_r}{L_r}\right)\sigma + \left(2 + \frac{B}{J}\left(\frac{R_r}{L_r} - 2\right) - \frac{k_e}{L_r} \frac{k_t}{J}\right)\omega + \frac{k_t}{JL_r}v_r
\]
DF Analysis & Sliding Modes

Internal reduced-order dynamics
\[
\dot{\omega} = -2\omega + \sigma
\]
\[
\Omega(s) = \frac{1}{s + 2}\sum(s)
\]

At steady-state
\[
\sigma(t) = \sigma_0 + U \sin(\omega_{lc} t)
\]
\[
\left| \frac{1}{j \omega_{ls} + 2} \right| \approx 0.0015
\]

Nyquist plot parameters
\[
\omega_{lc} = 662 \text{ rad/s}
\]
\[
U_{ls} = 1.1833 \text{ rad/s}^2
\]
\[
\Delta\omega_{ls} = 0.0018 \text{ rad/s}
\]

Simulation results
\[
T_{ls} = 9.7 \text{ ms}
\]
\[
\omega_{lc} = 646 \text{ rad/s}
\]
\[
U_{ls} = 1.8544 \text{ rad/s}^2
\]
\[
\Delta\omega_{ls} = 0.0029 \text{ rad/s}
\]
The Describing Function approach to the analysis of the chattering phenomenon in sliding mode control systems can be used to have an estimate of the chattering parameters, i.e., frequency and magnitude.

The estimates are affected by an error which depends on the low-pass properties of the linear part of the plant.

The sliding variable must be considered as the output of the nonlinear feedback system.

The actual system output behaviour can be estimated by considering the reduced order dynamics.

In the presence of a constant reference value, the nonlinear function can be not symmetric, therefore an equivalent gain of the nonlinearity has to be considered to estimate the constant mean steady-state value of the output.