The use of SMGI in supporting tourism planning practices: an innovative approach for the municipality of Cagliari

Roberta Florisa, Pierangelo Massaa, Michele Campagnaa

a University of Cagliari, Cagliari, Italy (roberta.floris@unica.it, pmassa@unica.it, campagna@unica.it)

Key-words: SMGI, Spatial planning, Tourism planning, Users’ perceptions, Data analysis.

Introduction

Tourism is commonly recognized as a spatial (Peroni 2007) and soil consumption (Boccagna 2010) phenomenon, which comprises the travel to and around a destination, with the purpose of exploiting particular natural or non-natural attractions, accommodations, general and specialized services (Smith 1991). It may generates positive and negative impacts within the social, cultural and environmental domains (Buhalis 1999). These impacts may become more evident when tourist activities are not adequately developed and planned (Briassoulis 2002). In Sardinia, the tourism sector is one of the major driving forces of regional economy and mostly affects coastal areas, which have usually been considered as locations to be planned in a special way, due to their fragility, for the number of activities and possible land uses (Hospers 2003). As a result, various interests, such as those of residents, developers and environmentalists, may meet in coastal areas and come into conflict. Thus, the Regional Executive Committee decided to prepare the Regional Landscape Plan (RLP) together with the Regional Plan for Sustainable Development based on Tourism (RPSDT), in order to preserve cultural and natural landscape and to promote sustainable development based on tourism. The RPSDT focuses on the relationship between economic benefits and environmental impacts of tourism services supply; however it lacks of a global strategy of sustainable development, as well as of an effective stakeholders’ involvement and of a deep analysis of tourists’ behaviours. Understanding tourists’ behaviour and psychology may help in assessing some of the problems that planners and decision-makers need to solve for the tourism planning implementation (Briassoulis ibidem). Indeed, good planning process needs to engage local communities and recipients directly in its implementation (Zoppi 2012).

In the Digital Information age, tourist preferences data, available on online forums and reviews, are generated by users and may provide relevant knowledge for planning practices (Campagna et al. 2015). Moreover, the integration of this information, namely Social media geographic information (SMGI), with official data, or Authoritative geographic information (A-GI), may represent an opportunity to enrich tourism strategies with a broader, deeper and more multifaceted knowledge of the places.

In the light of these premises, the paper aims to demonstrate the potential of SMGI for supporting tourism planning practices, and the benefits derived from informing local initiatives with a pluralist user-oriented view on strategic development issues. An innovative approach, applied to a case study concerning the municipality of Cagliari, is presented, by which tourists’ preferences are discovered by processing and analyzing publicly available social media data.
Methodology

The methodological approach builds on a preliminary analysis regarding the tourists’ social networks’ contents for the Sardinia region, in order to identify the spatial distribution of tourists’ preferences and the relationships between the quality of tourist lodging services (TLSs) and their geographic locations. Effectively, the study is carried out through the following four steps:

- Data collection from Booking and TripAdvisor and geocoding;
- Preferences’ dynamics analysis;
- Geographically weighted regression (GWR) model (Fotheringham et al. 2002) estimation;
- Complementary SMGI extraction from Instagram and Foursquare.

The first step consists of the construction of a database based on rankings, which are drawn from tourists’ ratings extracted for the period May 2012-May 2013 from Booking.com and TripAdvisor. The dataset includes both quantitative information concerning the TLSs scores and qualitative information related to TLSs’ inherent characteristics and tourists’ textual reviews. The main issue is to manage this huge amount of information. Thus, the study requires the adoption of a mixed methodological approach. The second step includes the implementation of a spatial analysis of users’ opinions and attitudes, relying upon spatial statistics methods and spatial, temporal and textual analysis, in order to identify clusters of TLSs showing high concentration of users’ preference at the regional level. Afterwards, at the local level in the destination of Cagliari, analyses are developed in order to discover through the investigation of textual contents why tourists prefer some destinations rather than others (qualitative analysis), meanwhile, a quantitative assessment, regarding the location of tourists’ preferences and the factors that contribute to this phenomenon, is implemented integrating SMGI and available A-GI.

In the third step a spatial regression is used for modelling the preferences phenomenon and testing the reliability of the hypothesis derived from textual analysis, in order to identify leading success factors of destinations and make appropriate decisions in terms of policy. Finally, in the last step we evaluate in more detail the study area, identifying the points of interest (POI) as perceived by tourists and local community through social network contributions. This step is carried out by extracting a complementary SMGI dataset from Instagram, related to the period May 2012-May 2013, processing data by means of a spatial clustering analysis and extracting Foursquare SMGI in order to identify the most attractive venues within the detected clusters.

Results and discussion

Geocoding is run on the extracted addresses of each tourism lodging service (TLS) collected from Booking.com and TripAdvisor within the Sardinian region. A unified database of 992 records is finally defined. The analysis’ results reveal that the spatial distribution of the tourists’ reviews on the TLSs is divided into five types of accommodation: bed and breakfast (15.7%), agritourism (6.0%), hotels (42.0%), residences and resorts (7.3%) and tourist houses (29.0%). The analysis of the tourists’ preferences related to the coastal and inner areas of Sardinia revealed that a 92.0% of tourists’ reviews concerns TLSs located in the coastal areas, while less than an 8.0% are related to the inner areas. Possibly, this may indicate that thus far only a few tourists are attracted by inner areas, which allow discovering a less popular side of the island, characterized by its significant natural and cultural heritage and tradition-related resources. For each TLS, the database includes a score record that is the average of six attributes, namely geographic position, services’ proximity, price/quality ratio, staff quality, room cleanliness and TLS’s perceived comfort. Data are normalized and ranked by the same scale in order to identify the locations
most affected by Tourists’ positive preferences incidence (TPPI) in Sardinia. Results confirm that the municipalities located along the coastal area attract tourists, while the inner areas are less attractive.

Afterwards, integrating SMGI and A-GI and carrying out spatial analysis, textual analysis and statistical techniques, the study investigates the potential reasons behind the tourists’ preferences toward certain locations (qualitative analysis). The SMGI-based analysis assesses the success factors, namely the determinants (explanatory variables) of the high TPPI rates (dependent variable), concerning the Cagliari municipality, which is considered among the best-selling destinations by different tourists’ typologies. The spatial clusters of preferences are detected by hot-spot analysis (Getis and Ord 1992). The location of each TLS allows detecting sites where the preferences of tourists who visited Cagliari are focused on. Firstly, a threshold distance of 1,700 meters is identified and the spots by census tract summarized. The darker areas, located in the inner areas of the municipality, show high concentration of the TPPI phenomenon (hot spot), while the lighter areas, located in Pirri, that is a peripheral residential area, represent locations where the phenomenon is less intense (cold spot) as shown in Figure 1.

The next step focuses on each review’s content in order to understand what tourists think about Cagliari. Hundreds of textual reviews on TLS are processed by means of simple text analytics, identifying the most used words and consequently the spatial or physical aspects more attracting users. While most of the words refer to municipalities physical factors, such as ‘city centre’, ‘beach’, and ‘church’, other words are related both to leisure sites, that is ‘restaurants’ and ‘shopping’, and to TLS’ supplied services, such as ‘staff’ and ‘room’. Moreover, a number of keywords concerning accessibility, such as ‘proximity’ and ‘walking’, are frequent too, potentially indicating a correlation with TLSs spatial location. This is not the kind of information we usually find in land use-related planning documents, but it may be powerful in supporting design and decision-making.

The spatial relationships and the explanatory factors behind observed spatial patterns are modelled using the GWR. The aim of the regression is to discover what factors contribute to the TPPI rate. The model is applied to a sample of 150 TLSs spatially distributed over 100 of the 1359 Cagliari’s census tracts. The dependent variable is the score of the TPPI, normalized as fraction of the comments that are positive for a location belonging to a census tract. For each census tract, a measure of the set of independent variables, concerning topography, transport infrastructure, cultural heritage sites, and socio-economic features, is calculated. The results of
the statistical tests for measuring redundancy (Variance inflation factor or VIF test, Mennis 2006) suggest that the following candidate variables are included, normalized by the total census tract’s area:

- number of historical buildings in the TLS’ census tract;
- number of restaurants and facilities in the TLS’ census tract;
- proximity to the historic center of the municipality;
- distance from the airport;
- hectares of natural protected areas in the TLS’ census tract;
- distance from the municipality’s beach.

A spatially-lagged explanatory variable is added to control for spatial autocorrelation of the dependent variable. The presence of spatial autocorrelation (Anselin 1988) related to the value of the normalized TPPI, is detected through the Moran’s test (Moran 1950).

Tab. 1. GWR model: influence of each explanatory variable on dependent variable.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPPI_lag [19]</td>
<td>0.0663</td>
<td>0.0307</td>
<td>2.1621</td>
<td>0.0306</td>
</tr>
<tr>
<td>Constant</td>
<td>0.0031</td>
<td>0.0102</td>
<td>0.3012</td>
<td>0.7633</td>
</tr>
<tr>
<td>N_restaurants</td>
<td>-0.0390</td>
<td>0.0300</td>
<td>-1.3013</td>
<td>0.1932</td>
</tr>
<tr>
<td>Proxy_historic_center</td>
<td>0.4748</td>
<td>0.0585</td>
<td>8.1146</td>
<td>0.0000</td>
</tr>
<tr>
<td>N_hist_buildings</td>
<td>-0.0273</td>
<td>0.0313</td>
<td>-0.8724</td>
<td>0.3830</td>
</tr>
<tr>
<td>H_natural_areas</td>
<td>0.0027</td>
<td>0.0096</td>
<td>0.2834</td>
<td>0.0777</td>
</tr>
<tr>
<td>Distance_airport</td>
<td>0.7661</td>
<td>0.0340</td>
<td>22.5511</td>
<td>0.0000</td>
</tr>
<tr>
<td>Distance_beach</td>
<td>0.5470</td>
<td>0.0383</td>
<td>14.2922</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

The result of the local Moran’s index is quite significant at the second order of contiguity in respect of results obtained using a threshold distance of 2,500 meters: adjusted R-squared is less than 40%, the p-value of the dependent variable’s coefficient is very significant (1.0 10-8) and the value of the Moran’s index is 0.024. The very low p-value indicates that the spatial autocorrelation of the dependent variable is highly significant. The results regarding the goodness of fit of the spatial regression, shown in Table 1, are significant: R-squared, namely the measure of the size of the variance of the dependent variable explained by the set of the explanatory variables, is as high as 86%, indicating that variables in the model are able to explain about 86% of the TPPI’s variance. The results of the GWR are quite significant for the description of the spatial distribution of TPPI. The coefficients of the variables related to the distance from the airport, to the proximity to the city centre and to the proximity to the beach, which concern the TLSs’ location, show positive signs and are almost always significant (p-values less than 5%). The variables related to the restaurants and to the historical buildings are not very significant, for the p-values are bigger than 10%, while the hectares of natural protected areas show a positive sign and a 8% significant coefficient. Overall, these findings suggest that the spatial interest of the tourists is quantitatively influenced the geographic locations and the services supply.

Finally, the last step concerns the complementary extraction of SMGI from Instagram and Foursquare, eliciting further knowledge related to specific public spaces in Cagliari municipality, namely the Poetto beach and the Regional Park of Molentargius. Integrating data from multiple sources may allow detecting POI in the study area, easing to understand the reasons behind the GWR model explanatory variable ‘proximity to the beach’. Data collection is conducted for the
period May 2012-May 2013 and results in a dataset of 34,776 geotagged photos. Then, a cluster analysis by DBSCAN algorithm (Ester et al. 1996) is run on the dataset, identifying 220 clusters of interest in the area. The results confirm the major interest of users toward the coastal area, probably because of the presence of popular venues. In order to gain further insights about the users’ preferences, a Foursquare SMGI extraction is carried out identifying the type of the most visited venues in the clusters.

![Clusters and POIs](image)

Fig. 2. Most visited Instagram SMGI clusters and Foursquare POIs.

The extraction results in a dataset of 177 POIs, which are assigned to clusters and evaluated in terms of typology and specific degree of attractiveness, as shown in Figure 2. The obtained results demonstrate the SMGI opportunities to supply information related to the geography of places, while enabling at the same time a more detailed characterization of the public spaces with information usually not available to planners.

Conclusions

This paper discusses a methodological approach for exploiting SMGI, a novel source of information that may be integrated with official information and used in tourism planning, in order to take into account a multifaceted tourists’ oriented view on strategic development issues. The findings, providing insights on the Cagliari’s tourism dynamics, might be effectively implemented into planning policies whose objective is to increase the tourists’ satisfaction and foster sustainable development policies. With reference to the results obtained for Cagliari destination, several policies may be identified, such as:

- improving protection of the municipality of Cagliari’s natural areas, since the coefficient of variable ‘H_natural_areas’ is positive and significant;
- improving the accessibility of the Cagliari’s historic centre, since the coefficient of variable ‘Proxy_historic_center’ is positive and significant;
- the accessibility of the Cagliari’s beach and increasing the supply of facilities for tourist reception since the coefficient of variable ‘Distance_beach’ is positive and significant;
- improving the range of offered amenities along the beach, since users and tourists may be attracted by a diversification of services, as suggested by the identified clusters’ area (Instagram) and successful detected POIs (Foursquare).

In conclusion, users’ preferences knowledge in supporting the tourism planning processes may represent a significant implication for future research in the field of social sciences and tourism.
e-agorà|e-ἀγορά for the transition toward resilient communities

management. As a matter of fact, the proposed case study emphasizes the importance of the stakeholders (users or tourists) within the inclusive processes. In this regard, their behaviours may strengthen or discourage the existing power relations fostering more democratic and transparent processes. Early results are promising and disclose challenging research opportunities, which may bring innovation to tourism planning, design and decision-making.

References

for the transition toward resilient communities

edited by G. Colombo | P. Lombardi | G. Mondini
INPUT 2016 “e-agorà/e-ἀγορά for the transition toward resilient communities”

INPUT2016 CONFERENCE COMMITTEE
Arnaldo Cecchini, University of Sassari
Dino Borri, Polytechnic University of Bari
Valerio Cutini, University of Pisa
Alessandro Plaisant, University of Sassari
Giovanni Rabino, Polytechnic University of Milan
Giuseppe Las Casas, University of Basilicata
Michele Campana, University of Cagliari
Andrea De Montis, University of Sassari
Corrado Zoppi, University of Cagliari
Rocco Papa, University of Naples "Federico II"
Patrizia Lombardi, Politecnico di Torino
Giovanni Colombo, ISMB Istituto Superiore Mario Boella
Giulio Mondini, SITI Higher Institute on Territorial Systems for Innovation

INPUT2016 SCIENTIFIC COMMITTEE
Ivan Blecic, University of Cagliari
Dino Borri, Polytechnic University of Bari
Grazia Brunetta, Politecnico di Torino
Edoardo Caila, ISMB Istituto Superiore Mario Boella
Domenico Camarda, Polytechnic University of Bari
Michele Campagna, University of Cagliari
Alessandra Casu, University of Sassari
Arnaldo Cecchini, University of Sassari
Giovanni Colombo, ISMB Istituto Superiore Mario Boella
Grazia Concilio, Polytechnic University of Milan
Tanja Congiu, University of Sassari
Valerio Cutini, University of Pisa
Andrea De Montis, University of Sassari
Giovanna Fancell, Paris-Dauphine University
Romano Fistola, University of Sannio
Sabrina Lai, University of Cagliari
Giuseppe Las Casas, University of Basilicata
Federica Leone, University of Cagliari
Sara Levi Sacerdott, SITI Higher Institute on Territorial Systems for Innovation
Patrizia Lombardi, Politecnico di Torino
Giampiero Lombardini, Università degli Studi di Genova
Enrico Macii, Politecnico di Torino
Fabio Manfredini, Polytechnic University of Milan
Stefania Mauro, SITI Higher Institute on Territorial Systems for Innovation
Giulio Mondini, SITI Higher Institute on Territorial Systems for Innovation
Eugenio Morello, Polytechnic University of Milan
Beniamino Murgante, University of Basilicata
Silvio Occelli, IRES Piemonte
Andrea Pacifici, ISMB Istituto Superiore Mario Boella
Rocco Papa, University of Naples "Federico II"
Paola Pittaluga, University of Sassari
Alessandro Plaisant, University of Sassari
Giovanni Rabino, Polytechnic University of Milan
Bernardino Romano, Università degli Studi dell’Aquila
Marco Santangelo, Politecnico di Torino
Francesco Scorza, University of Basilicata
Matteo Tabasso, SITI Higher Institute on Territorial Systems for Innovation
Valentina Talu, University of Sassari
Andrea Trunfio, University of Sassari
Andrea Vesco, ISMB Istituto Superiore Mario Boella
Angoletta Voghera, Politecnico di Torino
Corrado Zoppi, University of Cagliari

INPUT2016 ORGANISING COMMITTEE
Cristiana D’Alberto, ISMB Istituto Superiore Mario Boella
Maria Cristina Longo, SITI Higher Institute on Territorial Systems for Innovation
Stefania Mauro, SITI Higher Institute on Territorial Systems for Innovation
Luisa Montobbio, Politecnico di Torino
Cinzia Pagano, Politecnico di Torino

Edited by Giovanni Colombo (ISMB Istituto Superiore Mario Boella), Patrizia Lombardi (DIST - Politecnico di Torino), Giulio Mondini (SITI Higher Institute on Territorial Systems for Innovation)

Editorial coordination by Stefania Mauro

Graphic design by Sara Oggero (ISMB)

ISBN 978-88-9052-964-1
Table of Content

INPUT 2016 is the ninth meeting with the name INPUT ... 10
Arnaldo Cecchini

INPUT 2016 “e-agorà/e-ἀγορά for the transition toward resilient communities” 11
Giovanni Colombo

STeHeC - Smart Territories and Healthy Cities ... 12

The role of urban cyclability in promoting public health ... 13
Stefano Capolongo, Lorenzo Boati, Maddalena Buffoli, Marco Gola, Alessandra Oppio and Andrea Rebecchi

Social inclusion and use of equipped public space for physical activity. Analysis and promotion prospects ... 19
Rossella Maspoli

Beyond geospatial visualisation: maps for health research ... 25
Enrico Cicalò

Urban Form from the Pedestrian Point of View: Spatial Patterns on a Street Network 32
Alessandro Araldi and Giovanni Fusco

3D Modelling from Urban Environment to Internal Management of Buildings 39
Maurizio Minchilli, Elena Carta, Barbora Slabeciusová and Loredana Tedeschi

Appropriate Technologies and Deprived Neighbourhoods: Making Technologies Work for Inclusive Urban Development .. 46
Arnaldo Cecchini, Valentina Talu and Andrea Vesco

Planning, managing and empowering while pursuing change: integrating community map-making and geographic information technologies ... 52
Barbara Dovarch

Flexible Design to Territory Smart User-Centered ... 60
Cristiana Cellucci and Daniela Ladiana

Integrated Accessibility: a Macro-Requirement for the Healthy City 65
Filippo Angelucci and Michele Di Sivo

Environment – Cities – Users: a multidisciplinary approach for the quality of urban spaces 71
Angela Giovanna Leuzzi, Roberta Cocci Grifoni, Maria Federica Ottone and Enrico Prenna

Walk, See, Know: Modelling Landscape Accessibilities ... 77
Enrico Cicalò, Arnaldo Cecchini, Nada Beretic, Roberto Busonera, Dario Canu and Andrea Causin

Recording, management and returning of data for improving accessibility of public spaces by involving users ... 83
Ilaria Garofolo, Elisabeth Antonaglia and Barbara Chiarelli

Multilevel Infrastructures ... 89
Claudia Di Girolamo

The built environment as a determinant of the public health. An epidemiological survey of the walking behavior in Sardinia ... 93
e-agoràle-ayopá for the transition toward resilient communities

Marco Dettori, Andrea Piana and Paolo Castiglia

Shaping urban pedestrian mobility involving users: the Labac case study ..98

Barbara Chiarelli, Silvia Grion and Ilaria Garofolo

Spatial image of territories. The case study of Sardinia ...102

Miriam Mastinu

An Empirical Study on Factors of Perceived Walkability ...108

Ivan Blečić, Dario Canu, Arnaldo Cecchini, Tanja Congiu, Giovanna Fancello and Giuseppe Andrea Trunfio

GPS Tracking and Surveys Analysis of Tourists’ Spatio-Temporal Behaviour. The case of Alghero. ...114

Ivan Blečić, Dario Canu, Arnaldo Cecchini, Tanja Congiu, Giovanna Fancello and Giuseppe Andrea Trunfio

Triggers of urban innovation. The Case of Cavallerizza Reale in Turin ..111

Roberta Guido

No more build, but regenerate and reuse ...128

Cristiana Cellucci and Daniela Ladiana

A Reflection on Smart Governance in the new Metropolitan City of Cagliari135

Chiara Garau, Ginevra Balletto and Paola Zamperlin

R&S.U.E Resilient & Safe Urban Environment ..143

Ester Zazzero

Planning for S.M.A.R.T. (Specific, Measurable, Achievable, Resilient, Time-bound) development: a bottom up approach to lead knowledge-based tourism development in low density rural districts ...151

Tanja Congiu, Maurizio Napolitano and Alessandro Plaisant

Urban intersections effect on pedestrian accessibility ..157

Ivan Blečić, Arnaldo Cecchini, Tanja Congiu, Dario Canu and Giovanna Fancello

Built environment and health inequalities: results from a European research project and overview of methods for assessing health impacts in urban areas ...164

Enrico Eynard, Giulia Melis and Matteo Tabasso

ESSP - Ecosystem Services and Spatial Planning ..170

Graph Representations of Site and Species Relations in Ecological Complex Networks171

Gianni Fenu and Pier Luigi Pau

Confictual issues concerning land uses related to ecosystem services under the provisions of the Habitats and Birds Directives ...177

Federica Leone and Corrado Zoppi

Assessment: land use and capacities to provide ecosystem service. The case study of Tertenia ...184

Maddalena Floris

The Natura 2000 Network in the context of the Metropolitan City of Cagliari: an example of Habitat Suitability Approach (part one) ...190

Daniela Ruggeri and Ignazio Cannas
The Natura 2000 Network in the context of the Metropolitan City of Cagliari: an example of Habitat Suitability Approach (part two, continued from part one) .. 196
Ignazio Cannas and Daniela Ruggeri

Ecosystem services within the appropriate assessment of land-use plans: exploring a potential integration ... 202
Sabrina Lai

Courtyards, Climate regulation services and Nature-based solutions: a modelling approach to support urban regeneration of empty spaces ... 208
Raffaele Pelorosso, Federica Gobattonia, Francesca Calace and Antonio Leone

TSC - Towards the Smart City .. 213

A critical review of parameters within urban sustainability models: how much do soil and natural resources weight? ... 214
Floriana Zucaro

The building aspect ratio for an energy efficient green network design ... 220
Carmela Gargiulo and Andrea Tulisi

Energy efficiency measures for building and their impact on the grid in a Middle East case study .. 226
Paolo Lazzeroni, Sergio Olivero, Federico Stirano, Guido Zanzotterra, Carlo Micono, Piercarlo Montaldo and Umberto Fabio Calì

Energy consumption in hospitals: towards a new benchmark .. 231
Romano Fistola and Marco Raimondo

Urban Environmental Quality and Sustainability: a proposal for an evaluation method of Neighborhood Sustainable Assessment tools .. 238
Rocco Papa, Chiara Lombardi and Maria Rosa Tremiterra

DIPENDE – a tool for energy planning of building districts based on energy performance certification data ... 245
Ezilda Costanzo, Bruno Baldissara and Marco Rao

Energy Efficiency and Participation: a double smart approach in LEO project 251
Cristina Marietta, Giulia Melis and Maurizio Fantino

Identify the sustainable level of local plans and urban sectors. Proposal for an operational procedure .. 258
Giuseppe Mazzeo

Key Messages: a decision support system based on the integration between city and mobility 264
Carmela Gargiulo and Maria Rosa Tremiterra

Accessibility and built environment surrounding metro stations: a GIS-based comparison of Naples line 1, Milan line 3 and London Jubilee line ... 269
Rocco Papa, Gerardo Carpentieri and Gennaro Angiello

A GIS-based and socially participative procedure for the location of high vulnerability territorial functions .. 275
Romano Fistola and Rosa Anna La Rocca
e-agoràle-ayopá for the transition toward resilient communities

Modelling and Assessing Pedestrian Isochrones around Public Transport Nodes: a People-Centred Perspective towards Smartness .. 281
Silvia Rossetti, Michela Tiboni and David Vetturi

Households’ willingness to pay in good and bad economy. The case study of Naples 287
Carmela Gargiulo, Simona Panaro and Laura Russo

SMGI - Social Media Geographic Information and collaborative mapping: exploring new trends in spatial analysis ... 294

Social Media Geographic Information Visual Analytics .. 295
Junia Borges, Ana Clara Moura, Priscila de Paula and Pedro Casagrande

Beyond social networks contents: how Social Media Geographic Information may support spatial planning analysis .. 300
Pierangelo Massa, Roberta Floris and Michele Campagna

Social Media Geographic Information for urban space analysis: the case of Expo Milano 2015 307
Raffaele Gallo, Michele Campagna, Pierangelo Massa and Giovanni Rabino

The use of SMGI in supporting tourism planning practices: an innovative approach for the municipality of Cagliari .. 313
Roberta Floris, Pierangelo Massa and Michele Campagna

Real society in virtual space: a new platform to share responsibilities 319
Lucia Lupi, Alessio Antonini, Guido Boella and Eloheh Mason

Online tools for public engagement: case studies from Reykjavik .. 325
Iva Bojic, Giulia Marra and Vera Naydenova

Comparing Traditional Maps with Twitter-Derived Maps: Exploring Differences and Similarities .. 331
Stefano Pensa and Elena Masala

Mapping the food system in Turin .. 337
Luca Davico, Marina Bravi, Egidio Dansero, Gabriele Garnero, Paola Guerreschi, Federico Listello, Giacomo Pettenati, Paolo Tamborrino and Alessia Toldo

Crowdmap applied to Geotourism: Case Study of Chapada Diamantina BA - Brazil 344
Pedro B. Casagrande, Nicole Rocha, Priscila Lisboa and Ana Clara Mourão Moura

MiraMap: an e-participation tool for Smart Peripheries ... 350
Francesca De Filippi, Cristina Coscia, Guido Boella, Alessio Antonini, Alessia Calaforra, Anna Cantini, Roberta Guido, Carlo Salaroglio, Luigi Sanasi and Claudio Schifanella

Production of spatial representations through collaborative mapping. An experiment 356
Angioletta Voghera, Rossella Crivello, Liliana Ardissono, Maurizio Lucenteforte, Adriano Savoca and Luigi La Riccia

UFePC - Urban Form and Perception of the City .. 362

THE FRIENDLY CITY [LA CIUDAD AMABLE]. Andalusian Public Space Programme Awareness raising, training and interventions regarding cities, public space and sustainable mobility 363
Gaia Redaelli

Space Syntax applied to the city of Milan ... 370

Valerio Cutini, Denise Farese and Giovanni Rabino

Configurational Approaches to Urban Form: Empirical Test on the City of Nice (France) 376

Giovanni Fusco and Michele Tirico

Physical factors affecting the citizens’ security feeling in communal spaces (case study: Bandar Abbas city) ... 383

Ali Shahdadi and Marziyeh Rezanejad

Conurbations and resilience. When growth makes us fragile .. 389

Valerio Cutini

IMPC – ICT Models: Planning for inclusive Communities .. 395

Virtual Environments as a Technological Interface between Cultural Heritage and the Sustainable Development of the City ... 396

Georgios Artopoulos

Visualisation Tools in Grasshopper+Rhino3D to Improve Multi-Criteria Analysis in Urban Policies – Case Study of Pampulha, Brazil ... 404

Ana Clara Mourão Moura, Suellen R. Ribeiro, Diogo C. Gualdalupo and Silvio R. Motta

Studies of Volumetric Potential in Pampulha, Brazil ... 411

Suellen R. Ribeiro and Ana Clara Mourão Moura

When the parametric modeling reveals a collapse in the future urban landscape: The case of Divinópolis – Minas Gerais/Brazil ... 418

Diogo de Castro Gualdalupo, Bruno Amaral de Andrade and Ana Clara Mourão Moura

A Spatial Decision Support System for Industrial Re-Use .. 424

Alessia Movia and Maria Vittoria Santi

How knowledge subjectivity affects decision-making: a Geodesign case study for the Cagliari Metro Area ... 429

Elisabetta Anna Di Cesare, Roberta Floris and Michele Campagna

Knowledge Organization for Community Revitalization: An Ontological Approach in Taranto Industrial City ... 436

Rossella Stufano, Dino Borri, Domenico Camarda and Stefano Borgo

Integrating VGI system in a Participatory Design Framework 441

Alessia Galafiore, Junia Borges, Ana Clara Mourão Moura and Guido Boella

Evaluation of social benefits generated by urban regeneration: a stated preference approach 447

Marta Bottero and Giulio Mondini

URTL - Urban-Rural Transitional Landscapes ... 453

Urban-rural-natural gradient analysis using CORINE data: an application to the Italian regions of Friuli Venezia Giulia, Umbria, and Calabria ... 454
e-agarâje-ayopá for the transition toward resilient communities

Marco Vizzari, Sara Antognelli, Maurizia Sigura and Giuseppe Modica

Liveability services in transitional landscapes: a spatial-MCDA model for assessment and mapping ...461

Sara Antognelli and Marco Vizzari

Big data and environmental management: the perspectives of the Regional Environmental Information System of Sardinia, Italy ..468

Andrea De Montis, Sabrina Lai, Nicoletta Sannio and Gianluca Cocco

Quantifying transport infrastructures and settlement fragmentation: strategic measures for rural landscape planning ...474

Andrea De Montis, Antonio Ledda, Vittorio Serra and Mario Barra

Multi-temporal satellite imagery for soil sealing detection and urban growth mapping in the city of Ranchi (India) ..480

Andrea Lessio, Vanina Fissore, Barbara Drusia and Enrico Borgogno-Mondino

Temporal variation of ecological network’s structure: some insights on the role of Natura 2000 sites ..486

Giuseppe Modica, Luigi Laudaria, Andrea De Montis, Simone Caschili, Maurizio Mulas, Amedeo Ganciu, Leonardo Dessena and Carmelo Ricardo Fichera

Reducing land take and preserving land quality. A methodology for the application of the Lombardy Regional Law ...493

Raffaele Signon and Giulio Senes

GIS advanced tools for urban growth reading and management for best practices in town-planning ...498

Enrico Borgogno-Mondino and Barbara Drusi

The bioremediation of polluted areas as an opportunity to improve ecosystem services505

Lorenzo Boccia, Alessandra Capolupo, Elena Cervelli, Stefania Pindozzi, Marina Rigillo and Maria Nicolina Ripa

Landscape Bionomics: A Comparison Between Two Rural-Suburban Landscapes from Brussels and Milan ...512

Vittorio Ingegnoli, Ernesto Marcheggiani, Hubert Gulinck, Fredrik Larouge and Andrea Galli

Mapping Cilento: Visual analysis of geotagged Twitter data to study touristic flows in southern Italy ..519

Ernesto Marcheggiani, Alvin Chuac, Loris Servillo and Andrew Vande Moere

Association between a spectral index and a landscape index for mapping and analysis of urban vegetation cover ...526

Nicole A. da Rocha, Ítalo S. Sena, Bráulio M. Fonseca and Ana Clara Mourão Moura

MMSD - Methods and Models for Sustainable Development ..532

Mobility Flow Estimates at Sub-Regional level: an Application to Piedmont533

Simone Landini, Sylvie Occelli

A parametric method to analyze and enhance the cultural heritage and its context538

Roberto De Lotto, Veronica Gazzola, Cecilia Morelli di Popolo and Elisabetta Maria Venco

Present State of Inbound Tourism in Japan and Factors of Destination Choice545
Akiko Kondo and Akio Kondo

A toolkit for sustainable development planning: the Val D’Agri case study551

Giuseppe Las Casas and Francesco Scorza

Indicators of resilience for Strategic Environmental Assessment ...557

Giampiero Lombardini

Scenarios’ evaluation of territorial transformation in the province of Belluno through the application of the AHP methodology ...563

Giovanni Campeol, Fabio De Felice, Nicola Masotto, Antonella Petrillo and Giuseppe Stellin